留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神府烟煤焦与城市固体废弃物水热炭焦共气化反应特性的实验研究

何清 卫俊涛 龚岩 丁路 于广锁

何清, 卫俊涛, 龚岩, 丁路, 于广锁. 神府烟煤焦与城市固体废弃物水热炭焦共气化反应特性的实验研究[J]. 燃料化学学报(中英文), 2017, 45(10): 1191-1199.
引用本文: 何清, 卫俊涛, 龚岩, 丁路, 于广锁. 神府烟煤焦与城市固体废弃物水热炭焦共气化反应特性的实验研究[J]. 燃料化学学报(中英文), 2017, 45(10): 1191-1199.
HE Qing, WEI Jun-tao, GONG Yan, DING Lu, YU Guang-suo. Experimental study on co-gasification reactivity of Shenfu bituminous coal char and MSW-based hydrochar[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1191-1199.
Citation: HE Qing, WEI Jun-tao, GONG Yan, DING Lu, YU Guang-suo. Experimental study on co-gasification reactivity of Shenfu bituminous coal char and MSW-based hydrochar[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1191-1199.

神府烟煤焦与城市固体废弃物水热炭焦共气化反应特性的实验研究

基金项目: 

国家自然科学基金 21676091

国家自然科学基金 21376081

中央高校基本科研业务费 222201717004

详细信息
    通讯作者:

    于广锁, Tel:021-64252974, Fax:021-64251312;E-mail:gsyu@ecust.edu.cn

  • 中图分类号: TQ541

Experimental study on co-gasification reactivity of Shenfu bituminous coal char and MSW-based hydrochar

Funds: 

the National Nature Science Foundation of China 21676091

the National Nature Science Foundation of China 21376081

the Fundamental Research Funds for the Central Universities 222201717004

  • 摘要: 基于常压热重分析仪(TG)开展了神府烟煤焦(SF char)、水热炭焦(HTC char)及其混合物等温CO2气化实验以研究气化温度(800-950℃)、掺混比(3:1、1:1、1:3)对共气化特性的影响,并探讨了气化反应活化能及其影响因素。结果表明,HTC因其较大的比表面积和较多的灰分而具有较强的气化活性。低HTC掺混比的混合物气化活性对温度变化敏感。低温下混合物的气化活性受HTC掺混影响显著。反应活化能随着反应转化率的增大而逐渐增大并趋于稳定。进一步研究表明,混合物的活化能与其掺混比以及活性矿物(K+Na)/Ca的物质的量比均存在近似线性关系。
  • 图  1  不同焦样等温气化转化率随时间的变化

    Figure  1  Curves of carbon conversion versus gasification time for the different chars

    ■: SF-800P; ●: SF:HT-3:1-800P; ▲: SF:HT-1:1-800P; $\blacktriangledown$ : SF:HT-1:3-800P; $\blacktriangleleft$ : HTC-800P

    图  2  焦样的电镜照片

    Figure  2  SEM of samples

    图  3  样品的比表面积

    Figure  3  Specific surface areas of samples

    图  4  lnt~1/T关系图

    Figure  4  Relationship between lnt and 1/T under different conversions

    图  5  共气化反应的温度效应

    Figure  5  Influence of temperature on co-gasification

    图  6  共气化反应混合比例的影响

    Figure  6  Influence of blending ratio on co-gasification

    图  7  活化能与转化率的关系

    Figure  7  Variation of activation energy under different conversions

    图  8  活化能与掺混比的关系

    Figure  8  Relationship between activation energy and char blending ratio

    图  9  活化能与活性AAEM关系

    Figure  9  Relationship between activation energy and active AAEM

    表  1  样品的工业分析和元素分析

    Table  1  Proximate analysis, ultimate analysis and ash fusion temperature of the samples tested

    Sample Proximate analysis wd/% Ultimate analysis wd/%
    V FC A C H N O* St
    SF 35.42 58.29 6.29 79.14 2.32 1.12 10.36 0.77
    SF char 6.48 82.255 10.27 87.17 0.91 0.54 1.01 0.10
    HTC 69.71 11.38 18.91 47.36 8.56 1.78 23.01 0.38
    HTC char 8.65 54.99 36.36 56.71 0.77 1.03 4.98 0.15
    d:dry basis;*:by difference
    下载: 导出CSV

    表  2  样品的灰成分分析

    Table  2  Ash composition of samples

    Sample Ash composition w/%
    SiO2 Al2O3 K2O Na2O CaO Fe2O3 MgO
    SF 33.36 12.44 0.67 1.73 27.78 9.11 1.34
    HTC 20.22 8.07 3.58 4.40 37.43 5.14 2.06
    下载: 导出CSV

    表  3  热解前后样品质量及混合比例变化

    Table  3  Quality and blending ratio change of samples during pyrolysis

    SF m/g HTC m/g Mixing ratio (SF:HTC)
    Raw material 20.00 20.00 3:1 1:1 1:3
    Char 13.44 7.17 0.85:0.15 0.65:0.35 0.38:0.62
    下载: 导出CSV

    表  4  SF半焦表面的元素组成

    Table  4  Element composition on the surface of AF semi-char

    Content w /%
    Na Mg Al Si K Ca Fe
    Co-gasificationa, b 5.66 0.99 2.08 3.70 2.64 2.36 0.83
    Individual gasification 1.33 0.49 1.62 2.24 0.32 1.84 0.83
    a:SF semi-char was obtained from the mixture SF:HTC-1:1-800P
    b:At the same gasification time, the conversions were xSF:HTC-1:1-800P=0.9 and xSF-800P=0.67 respectively
    下载: 导出CSV

    表  5  不同转化率活化能拟合的校正决定系数

    Table  5  The Adj. R. Square (R2) of activation energy under different conversion

    Sample R2
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    SF-800P 0.978 0.983 0.986 0.989 0.993 0.995 0.997 0.998 0.999
    SF:HTC-3:1-800P 0.979 0.987 0.991 0.993 0.994 0.994 0.995 0.995 0.996
    SF:HTC-1:1-800P 0.970 0.986 0.992 0.995 0.995 0.996 0.996 0.996 0.996
    SF:HTC-1:3-800P 0.960 0.981 0.988 0.991 0.993 0.995 0.994 0.994 0.994
    HTC-800P 0.986 0.982 0.985 0.987 0.988 0.990 0.991 0.990 0.989
    下载: 导出CSV

    表  6  气化反应的活化能

    Table  6  Gasification activation energy

    Conversion Gasification activation energy EA/(kJ·mol-1)
    SF-800P SF-HTC-3:1-800P SF-HTC-1:1-800P SF-HTC-1:3-800P HTC-800P
    0.1 192.34 176.16 149.62 133.11 114.43
    0.2 201.85 187.42 163.05 142.04 126.83
    0.3 207.31 195.00 169.71 147.46 133.91
    0.4 210.08 199.28 177.10 150.39 137.06
    0.5 211.30 201.22 182.80 152.48 139.89
    0.6 211.73 201.95 185.28 158.17 141.48
    0.7 211.85 202.31 186.04 163.59 140.86
    0.8 211.63 203.10 186.07 164.66 139.94
    0.9 211.15 204.30 185.35 162.75 139.80
    Average value 207.69 196.75 176.11 152.74 134.91
    下载: 导出CSV

    表  7  焦活性AAEM含量

    Table  7  Content of active AAEM in char

    AAEM w/(mmol·g-1)
    SF-800P SF-HTC-3:1-800P* SF-HTC-1:1-800P* SF-HTC-1:3-800P* HTC-800P
    K 0.0015 0.0472 0.1082 0.1904 0.3062
    Na 0.0061 0.0441 0.0948 0.1632 0.2596
    Ca 0.5000 0.5705 0.6646 0.7916 0.9703
    下载: 导出CSV
  • [1] 李位位, 黄戒介, 王志青, 段会文, 李俊国, 房倚天.煤焦CO2气化反应动力学及内扩散对气化过程的影响分析[J].燃料化学学报, 2016, 44(12):1416-1421.

    LI Wei-wei, HUANG Jie-jie, WANG Zhi-qing, DUANG Hui-wen, LI Jun-guo, FANG Yi-tian. Reaction kinetics of coal char gasification with CO2 and the effect of internal diffusion on the gasification[J]. J Fuel Chem Technol, 2016, 44(12):1416-1421.
    [2] MOON J, MUN T-Y, YANG W, LEE U, HWANG J, JANG E, CHOI C. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification[J]. Energy Convers Manage, 2015, 89:401-407. http://www.sciencedirect.com/science/article/pii/S0196890415005993
    [3] MASNADI M S, GRACE J R, BI X T, JIM L, NAOKO E. From fossil fuels towards renewables:Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels[J]. Appl Energy, 2015, 140(15):196-209. https://www.cabdirect.org/cabdirect/abstract/20153285884
    [4] JEONG H J, PARK S S, HWANG J. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1100℃[J]. Fuel, 2014, 116(15):465-470. http://www.wenkuxiazai.com/doc/14ef2cc4aaea998fcd220e1c.html
    [5] SATYAM N V, AGHALAYAM P, JAYANTI S. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin[J]. Bioresour Technol, 2016, 209:157-165. doi: 10.1016/j.biortech.2016.02.137
    [6] ZHANG Z, PANG S, LEVI T. Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass[J]. Renew Energy, 2017, 101:356-363. doi: 10.1016/j.renene.2016.08.070
    [7] RIZKIANA J, GUAN G, WIDAYATNO W B, HAO X G, LI X M, HUANG W, ABULITY A. Promoting effect of various biomass ashes on the steam gasification of low-rank coal[J]. Appl Energy, 2014, 133(15):282-288. http://www.sciencedirect.com/science/article/pii/S030626191400782X
    [8] WEI J T, GUO Q H, HE Q, DING L, Yoshikawa K, YU G S. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste:Reactivity and synergy[J]. Bioresour Technol, 2017, 239:482-489. doi: 10.1016/j.biortech.2017.05.014
    [9] HUO W, ZHOU Z J, WANG F C, WANG Y F, YU G S. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J]. Fuel, 2014, 131(1):59-65. http://www.sciencedirect.com/science/article/pii/S0016236114003937
    [10] WEI X F, HUANG J J, LIU T F, FANG Y T, WANG Y. Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy Fuel, 2008, 22(3):1840-1844. doi: 10.1021/ef7007858
    [11] WEI J T, GUO Q H, CHEN H D, CHEN X L, YU G S. Study on reactivity characteristics and synergy behaviours of rice straw and bituminous coal co-gasification[J]. Bioresour Technol, 2016, 220:509-515. doi: 10.1016/j.biortech.2016.08.116
    [12] 陈凡敏, 王兴军, 王西明, 周志杰.煤催化气化过程中钾的迁移及其对气化反应特性的影响[J].燃料化学学报, 2013, 41(3):265-270. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18132.shtml

    CHEN Fan-min, WANG Xing-jun, WANG Xi-ming, ZHOU Zhi-jie. Transformation of potassium during catalytic gasification of coal and the effect on gasification[J]. J Fuel Chem Technol, 2013, 41(3):265-270. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18132.shtml
    [13] DING L, ZHANG Y Q, WANG Z Q, HUANG J J, FANG Y T. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014, 173:11-20. doi: 10.1016/j.biortech.2014.09.007
    [14] MAHINPEY N, GOMEZ A. Review of gasification fundamentals and new findings:Reactors, feedstock, and kinetic studies[J]. Chem Eng Sci, 2016, 148(12):14-31. http://www.sciencedirect.com/science/article/pii/S0009250916301440
    [15] GOMEZ A, MAHINPEY N. A new method to calculate kinetic parameters independent of the kinetic model:Insights on CO2 and steam gasification[J]. Chem Eng Res Des, 2015, 95:346-357. doi: 10.1016/j.cherd.2014.11.012
    [16] 董存珍, 汪小憨, 曾小军, 邵振华. CO2气氛下生物焦气化反应动力学参数的实验研究:I.活化能[J].燃料化学学报, 2014, 42(3):329-335. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18375.shtml

    DONG Cun-zhen, WANG Xiao-han, ZENG Xiao-jun, SHAO Zhen-hua. Experimental study on the gasification kinetic parameters of biomass chars under CO2 atmosphere:I. Activation energy[J]. J Fuel Chem Technol, 2014, 42(3):329-335 http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18375.shtml
    [17] TANNER J, BHATTACHARYA S. Kinetics of CO2 and steam gasification of Victorian brown coal chars[J]. Chem Eng J, 2016, 285(1):331-340.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  40
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-24
  • 修回日期:  2017-08-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-10-10

目录

    /

    返回文章
    返回