留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水滑石前驱体制备ZnCr2O4-ZnO复合光催化剂及产氢性能

张丽 戴超华 粱青满 阎建辉 周民杰

张丽, 戴超华, 粱青满, 阎建辉, 周民杰. 基于水滑石前驱体制备ZnCr2O4-ZnO复合光催化剂及产氢性能[J]. 燃料化学学报(中英文), 2017, 45(10): 1266-1274.
引用本文: 张丽, 戴超华, 粱青满, 阎建辉, 周民杰. 基于水滑石前驱体制备ZnCr2O4-ZnO复合光催化剂及产氢性能[J]. 燃料化学学报(中英文), 2017, 45(10): 1266-1274.
ZHANG Li, DAI Chao-hua, LIANG Qing-man, YAN Jian-hui, ZHOU Min-jie. Preparation of ZnCr2O4-ZnO composite photocatalyst based on the hydrotalcite precursor and its performance in hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1266-1274.
Citation: ZHANG Li, DAI Chao-hua, LIANG Qing-man, YAN Jian-hui, ZHOU Min-jie. Preparation of ZnCr2O4-ZnO composite photocatalyst based on the hydrotalcite precursor and its performance in hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1266-1274.

基于水滑石前驱体制备ZnCr2O4-ZnO复合光催化剂及产氢性能

基金项目: 

国家自然科学基金 51372080

湖南省自然科学基金面上项目 2017JJ2108

湖南省教育厅重点项目 15A076

详细信息
    通讯作者:

    周民杰, Tel:18773039728, E-mail:zmj0104@163.com

  • 中图分类号: O614.24

Preparation of ZnCr2O4-ZnO composite photocatalyst based on the hydrotalcite precursor and its performance in hydrogen production

Funds: 

The project was supported by the National Natural Science Foundation of China 51372080

the Natural Science Foundation of Hunan Provincial of China 2017JJ2108

Scientific Research Foundation of Hunan Provincial Education Department of China 15A076

  • 摘要: 以研磨水热法合成ZnCr2O4-ZnO异质结型光催化剂,对所得样品进行了TG-DTA、XRD、SEM、HRTEM、DRS和N2吸附-脱附表征分析;在模拟太阳光下,以草酸为牺牲剂对样品的光催化产氢活性进行评价,并分别与共沉淀法、尿素回流法和尿素水热法制备的ZnCr2O4-ZnO样品进行比较,探讨了异质结型ZnCr2O4-ZnO复合光催化剂的产氢机理。结果表明,四种方法制备的Zn-Cr前驱体都具有一定的水滑石结构,经500℃焙烧后,均为球形纳米粒子,但团聚情况各异,比表面积和孔结构参数有较大差别。其中,研磨水热法所得样品ZnCr2O4-ZnO粒子均匀,光电流响应强度最大,产氢效率最高,为0.956 mmol/(h·gcat),分别是共沉淀法、尿素回流法和尿素水热法制备样品产氢量的2.3、1.5和3.0倍。
  • 图  1  四种方法所得Zn-Cr-LDHs的TG-DTA曲线

    Figure  1  TG-DTA curves of Zn-Cr-LDHs obtained by four methods

    a: CP-LDHs; b: UR-LDHs; c: MP-LDHs; d: UH-LDHs

    图  2  四种方法所得Zn-Cr水滑石(a)及其0500℃焙烧后样品(b)的XRD谱图

    Figure  2  XRD patterns of Zn-Cr-LDHs (a) and Zn-Cr-LDHs calcined at 500℃(b) prepared by four methods

    图  3  四种方法所得Zn-Cr-LDHs在500℃焙烧后样品的SEM照片

    Figure  3  SEM images of Zn-Cr-LDHs calcined at 500℃

    (a): CP-500; (b): UR-500; (c): MP-500; (d): UH-500

    图  4  MP-500样品的HRTEM照片和EDS谱图

    Figure  4  HRTEM images ((a), (b)) and EDS spectra (c) of the MP-500 sample

    图  5  四种方法所得Zn-Cr-LDHs在500℃焙烧后样品的氮气吸附-脱附等温线(a)和孔径分布曲线(b)

    Figure  5  Nitrogen adsorption-desorption isotherms (a) and pore size distribution curves (b) of Zn-Cr-LDHs calcined at 500℃

    a: CP-500; b: UR-500; c: MP-500; d: UH-500

    图  6  四种方法所得Zn-Cr-LDHs在500℃焙烧后样品的紫外-可见漫反射光谱图

    Figure  6  UV-vis diffuse reflectance spectra of Zn-Cr-LDHs calcined at 500℃

    a: CP-500; b: UR-500; c: MP-500; d: UH-500

    图  7  制备方法对光催化产氢活性的影响

    Figure  7  Effect of the preparation method on the photocatalytic performance in hydrogen production

    图  8  MP-500样品的光催化产氢稳定性

    Figure  8  Stability of the MP-500 photocatalysts in hydrogen production

    图  9  四种方法所得样品在模拟太阳光下的光电流响应

    Figure  9  Photocurrent response of the samples prepared by four methods under simulated sunlight irradiation

    a: CP-500; b: UR-500; c: MP-500; d: UH-500

    图  10  ZnCr2O4-ZnO电荷分离与光催化产氢机理示意图

    Figure  10  Schematic diagram of the charge separation and mechanism of photocatalytic H2 evolution over ZnCr2O4-ZnO

    表  1  四种方法所得Zn-Cr-LDHs在500℃焙烧样品的比表面积和孔结构

    Table  1  Specific surface area and pore-structure data of the samples prepared by four methods after calcinations at 500℃

    Sample ABET / (m2·g-1)Average pore width d/nmPore volume v/ (cm3·g-1)
    CP-50081.318.60.38
    UR-50057.315.90.23
    MP-50053.322.80.31
    UH-50049.817.00.21
    下载: 导出CSV
  • [1] FUJISHIMA K, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(7):37-38. http://www.wenkuxiazai.com/doc/2cca737302768e9951e738c2.html
    [2] WANG K, XU J M, WANG X T. The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites[J]. Appl Surf Sci, 2016, 360:270-275. doi: 10.1016/j.apsusc.2015.10.190
    [3] 刘宗园, 王桂赟, 刘先平, 王延吉. CuCrO2的合成及其复合催化剂的光催化性能[J].燃料化学学报, 2013, 41(12):1473-148. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18314.shtml

    LIU Zong-yuan, WANG Gui-yun, LIU Xian-ping, WANG Yan-ji. Preparation of CuCrO2 and the photocatalytic properties of its composites[J]. J Fuel Chem Technol, 2013, 41(12):1473-148. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18314.shtml
    [4] YU X L, AN X Q, GENC A, IBANEZ M, ARBIOL J, ZHANG Y H, and CABOT A. Cu2ZnSnS4-PtM (M=Co, Ni) Nanoheterostructures for Photocatalytic Hydrogen Evolution[J]. J Phys Chem C, 2015, 119(38):21882-21888. doi: 10.1021/acs.jpcc.5b06199
    [5] 王泽岩, 黄柏标, 戴瑛.高效光催化材料的设计与制备[J].中国材料进展, 2017, 36(1):7-17. http://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201701005.htm

    WANG Ze-yan, HUANG Bai-biao1, DAI Ying. Design and Synthesis of Highly Reactive Photocatalysts[J]. Mater China, 2017, 36(1):7-17. http://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201701005.htm
    [6] NIKITENKO S I, CHAVE T, CAU C, BRAU H-P, FLAUD V. Photothermal Hydrogen Production Using Noble-Metal-Free Ti@TiO2 Core-Shell Nanoparticles under Visible-NIR Light Irradiation[J]. ACS Catalysis, 2015, 5(8):4790-4795. doi: 10.1021/acscatal.5b01401
    [7] KLINGSHIM C. ZnO:material, physics and applications[J]. ChemPhysChem, 2007, 8(6):782-803. doi: 10.1002/(ISSN)1439-7641
    [8] WANG Z L. Zinc oxide nanostructures:growth, properties and applications[J]. J Phys:Condens Matter, 2004, 16(25):R829-R858. doi: 10.1088/0953-8984/16/25/R01
    [9] WANG Z, TERAMURA K, HOSOKAWA S, TANAKA T. Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4[J]. J Mater Chem A, 2015, 3(21):11313-11319. doi: 10.1039/C5TA01697E
    [10] ZHANG L, YAN J H, ZHOU M J, YANG Y H, LIU Y N. Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres[J]. Appl Surf Sci, 2013, 268:237-245. doi: 10.1016/j.apsusc.2012.12.069
    [11] YANG H H, YAN J H, LU Z, CHENG X, TANG Y G. Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation[J]. J Alloys Compd, 2009, 476(1):715-719. http://www.academia.edu/13994341/A_review_on_the_visible_light_active_titanium_dioxide_photocatalysts_for_environmental_applications
    [12] GHOLAMI T, SALAVATI-NIASARI M, VARSHOY S. Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment:Green synthesis and characterization[J]. Int J Hydrogen Energy, 2016, 41(22):9418-9426. doi: 10.1016/j.ijhydene.2016.03.144
    [13] PENG C, GAO L. Optical and photocatalytic properties of spinel ZnCr2O4 nanoparticles synthesized by a hydrothermal route[J]. J Am Ceram Soc, 2008, 91(7):2388-2390. doi: 10.1111/jace.2008.91.issue-7
    [14] BOUMAZA S, BOUGUELIAA, BOUARAB R, TRARI M. Physical and photoelectrochemical studies for hydrogen photo-evolution over the spinel ZnCr2O4[J]. Int J Hydrogen Energy, 2009, 34(11):4963-4967. doi: 10.1016/j.ijhydene.2008.11.059
    [15] KUMAR A, DIXIT T. Phase Transformation and Optical Properties of Annealed Hydrothermally Synthesized ZnO/ZnCr2O4 Nanocomposites[J]. Int J Appl Ceram. Technol, DOI:2016,10.1111/ijac.12546.
    [16] 祝雅杰, 吴平霄, 杨林, 陈理想, 黄柱坚. ZnO-ZnCr2O4混合金属氧化物的制备及其光催化降解双酚A[J].环境科学学报, 2016, 37(7):2428-2425.
    [17] PALMER S J, FROST R L, NGUYEN T. Hydrotalcites and their role in coordination of anions in Bayer liquors:anion binding in layered double hydroxides[J]. Coord Chem Rev, 2009, 253(1):250-267. https://eprints.qut.edu.au/15728/
    [18] MOHAPATRA L, PARIDA K M. Zn-Cr layered double hydroxide:Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants[J]. Sep Purif Technol, 2012, 91:73-80. doi: 10.1016/j.seppur.2011.10.028
    [19] KIM S H, FAHEL J, DURAND PAndré E, Carteret C. Ternary layered double hydroxides (LDH) based on ZnAl substituted with Co, Cu for efficient photocatalysts designs[J]. Eur J Inorg Chem, DOI:2016,10.1002/ejic.01213.
    [20] POKHREL S, JEYARAJ B, NAGARAJA K S. Humidity-sensing properties of ZnCr2O4-ZnO composites[J]. Mater Lett, 2003, 57(22):3543-3548. http://www.academia.edu/2828928/Structural_and_gas-sensing_properties_of_CuO_Cu_sub_x_sub_Fe_sub_3_x_sub_O_sub_4_sub_nanostructured_thin_films
    [21] JIANG C, LEE K Y, PARLETT C M A, BAYAZIT M K, LAU C C, RUAN Q S, MONIZ S J A, LEE A F, TANG J W. Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production[J]. Appl Catal, A, 2016, 521:133-139. doi: 10.1016/j.apcata.2015.12.004
    [22] CHENG X, HUANG X R, WANG X Z, SUN D Z. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor[J]. J Hazard Mater, 2010, 177:516-523. doi: 10.1016/j.jhazmat.2009.12.063
    [23] HUO R J, KUANG Y, ZHAO Z P, ZHANG F Z, XU S L. Enhanced photocatalytic performances of hierarchical ZnO/ZnAl2O4 microsphere derived from layered double hydroxide precursor spray-dried microsphere[J]. J Colloid Interface Sci, 2013, 407:17-21. doi: 10.1016/j.jcis.2013.06.067
    [24] Yu X X, Yu J G, CHENG B, JARONIEC M. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties[J]. J Phys. Chem. C, 2009, 113(40):17527-17535. doi: 10.1021/jp906992r
    [25] GUO Q, ZHANG Z H, MA X P, JING K, SHEN M L, YU N, TANG J H, DIONYSIOU D D. Preparation of N, F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances[J]. Sep Purif Technol, 2017, v175:305-313.
    [26] SREETHAWONG T, PUANGPETCH T, CHAVADEJ S, YOSHIKAWA S. Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template[J]. J Power Sources, 2007, 165(2):861-869. doi: 10.1016/j.jpowsour.2006.12.050
    [27] TAN D Z, FAN W J, XIONG W N, SUN H X, LI A, DENG W Q, MENG C G. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents:The role of pore volume[J]. Eur Polym J, 2012, 48(4):705-711. doi: 10.1016/j.eurpolymj.2012.01.012
    [28] ZHANG Y, TANG Z R, FU X, XU Y J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube[J]. ACS Nano, 2011, 5:7426-7435. doi: 10.1021/nn202519j
    [29] 郝瑞鹏, 杨朋举, 王志坚, 朱珍平.贵金属负载TiO2对光催化还原CO2选择性的影响[J].燃料化学学报, 2015, 43(1):94-99. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18561.shtml

    HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. J Fuel Chem Technol, 2015, 43(1):94-99. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18561.shtml
    [30] PARHI P, MANIVANNAN V. Microwave metathetic approach for the synthesis and characterization of ZnCr2O4[J]. J Eur Ceram Soc, 2008, 28:1665-1670. doi: 10.1016/j.jeurceramsoc.2007.11.005
    [31] 张丽, 阎建辉, 周民杰, 杨亚辉, 刘又年.高比表面空心球ZnO/ZnAl2O4复合光催化剂制备及活性[J].无机化学学报, 2012, 28(9):1827-1834.

    ZHANG Li, YAN Jian-hui, ZHOU Min-jie, YANG Ya-hui, LIU You-nian. Preparation and Photocatalytic Property of Hollow Sphere-Like ZnO/ZnAl2O4 Composite Photocatalysts with High Specific Surface Area[J]. Chinese J Inorg Chem, 2012, 28(9):1827-1834.
    [32] 危阳, 马新国, 祝林, 贺华, 黄楚云.二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究[J].物理学报, 2017, 66(8):087101-1-087101-10. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201708031.htm

    WEI Yang, MA Xin-guo, ZHU Lin, HE Hua, HUANG Chu-yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure[J]. Acta Phys Sin, 2017, 66(8):087101-1-087101-10. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201708031.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  64
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-08-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-10-10

目录

    /

    返回文章
    返回