留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响

李树娜 宋佩 张金丽 贺小霞 解一昕 张亚刚 王瑞义 李志凯 朱华青

李树娜, 宋佩, 张金丽, 贺小霞, 解一昕, 张亚刚, 王瑞义, 李志凯, 朱华青. CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J]. 燃料化学学报(中英文), 2018, 46(5): 615-624.
引用本文: 李树娜, 宋佩, 张金丽, 贺小霞, 解一昕, 张亚刚, 王瑞义, 李志凯, 朱华青. CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J]. 燃料化学学报(中英文), 2018, 46(5): 615-624.
LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 615-624.
Citation: LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 615-624.

CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响

基金项目: 

国家自然科学基金 51704240

国家自然科学基金 21703276

国家自然科学基金 51602253

陕西省自然科学基金 2016JQ2030

陕西省自然科学基金 2016JQ2017

陕西省教育厅基金 15JK1491

西安市科技计划项目 2017CGWL24

西安市科技计划项目 CXY1531WL03

详细信息
  • 中图分类号: O643

Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion

Funds: 

the National Natural Science Foundation of China 51704240

the National Natural Science Foundation of China 21703276

the National Natural Science Foundation of China 51602253

the Natural Science Foundation of Shaanxi Province of China 2016JQ2030

the Natural Science Foundation of Shaanxi Province of China 2016JQ2017

Natural Science Foundation of Education Department of Shaanxi Province 15JK1491

the Special Natural Science Foundation of Science and Technology Bureau of Xian City 2017CGWL24

the Special Natural Science Foundation of Science and Technology Bureau of Xian City CXY1531WL03

More Information
  • 摘要: 采用水热合成法制备了船形、扁球形及纳米片CeO2-MnOx复合氧化物。并运用低温N2吸脱附、XRD、SEM、TEM、H2-TPR、拉曼光谱、XPS等表征技术对不同形貌CeO2-MnOx复合氧化物的结构与其低浓度CH4催化燃烧反应性能之间的关系进行了关联。结果表明,CeO2-MnOx复合氧化物的形貌与其催化性能密切相关。其中,扁球形CeO2-MnOx复合氧化物的氧空位、Ce3+含量及表面吸附活性氧物种最多,其CH4催化燃烧反应活性最高,540℃时,可将CH4完全转化;其次是船形CeO2-MnOx复合氧化物催化剂,540℃时其CH4转化率为94.05%;与前两者相比,纳米片CeO2-MnOx复合氧化物催化剂的氧空位及表面吸附活性氧物种较少,活性较差,相同反应温度下,其CH4转化率仅为89.68%。
  • 图  1  CeO2及不同形貌CeO2-MNOx复合氧化物的XRD谱图

    Figure  1  XRD patterns of CeO2 and the mixed CeO2-MnOx oxides with different morphology

    a: CeO2; b: CeO2-MNOx(SP); c: CeO2-MNOx(OB); d: CeO2-MNOx(NS)

    图  2  CeO2及不同形貌CeO2-MNOx复合氧化物的SEM照片

    Figure  2  SEM images of CeO2 and the mixed CeO2-MnOx oxides with different morphology

    (a), (b): CeO2; (c), (d): CeO2-MNOx(SP); (e), (f): CeO2-MNOx(OB); (g), (h): CeO2-MNOx(NS)

    图  3  CeO2及不同形貌CeO2-MNOx复合氧化物的TEM照片

    Figure  3  TEM images of CeO2 and the mixed CeO2-MnOx oxides with different morphology

    (a): CeO2; (b): CeO2-MNOx(SP); (c): CeO2-MNOx(OB); (d): CeO2-MNOx(NS)

    图  4  CeO2及不同形貌CeO2-MNOx复合氧化物的H2-TPR谱图

    Figure  4  H2-TPR profiles of CeO2 and the mixed CeO2-MnOx oxides with different morphology

    a: CeO2; b: CeO2-MNOx(SP); c: CeO2-MNOx(OB); d: CeO2-MNOx(NS)

    图  5  CeO2及不同形貌CeO2-MNOx复合氧化物的拉曼光谱谱图

    Figure  5  Raman spectra of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    a: CeO2; b: CeO2-MNOx(NS); c: CeO2-MNOx(OB); d: CeO2-MNOx(SP)

    图  6  CeO2及不同形貌CeO2-MNOx复合氧化物的Ce 3d XPS谱图

    Figure  6  Ce 3d XPS spectra of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    a: CeO2; b: CeO2-MNOx(SP); c: CeO2-MNOx(OB); d: CeO2-MNOx(NS)

    图  7  不同形貌CeO2-MNOx复合氧化物的Mn 2p XPS谱图

    Figure  7  Mn 2p XPS spectra of the mixed CeO2-MNOx oxides with different morphology

    a: CeO2-MNOx(SP); b: CeO2-MNOx(OB); c: CeO2-MNOx(NS)

    图  8  CeO2及不同形貌CeO2-MNOx复合氧化物的O 1s XPS谱图

    Figure  8  O 1s XPS spectra of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    a: CeO2; b: CeO2-MNOx(NS); c: CeO2-MNOx(OB); d: CeO2-MNOx(SP)

    图  9  CeO2及不同形貌CeO2-MNOx复合氧化物的CH4转化率与反应温度的关系

    Figure  9  CH4 conversion of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    (1.0% CH4, 19.0% O2, balanced Ar and WHSV=30000 mL/(h·g))

    图  10  520 ℃下CeO2-MNOx(SP)和CeO2-MNOx(OB)催化剂的CH4催化燃烧稳定性测试

    Figure  10  Long-term stability test for CH4 catalytic combustion on CeO2-MNOx(SP) and CeO2-MNOx(OB) catalysts at 520 ℃ (1.0% CH4, 19.0% O2, balanced Ar and WHSV=30000 mL/(h·g))

    表  1  CeO2及不同形貌CeO2-MNOx复合氧化物的化学组成、比表面积和XRD分析

    Table  1  Chemical composition, surface area and XRD analysis results of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    Sample Ce/Mn (molar ratio) ABET/(m2·g-1) Cell parameter a/nm a Crystallite size d/nm b
    CeO2 - 93.4 0.5416 19.3
    CeO2-MNOx(SP) 9.0 79.5 0.5411 22.7
    CeO2-MNOx(OB) 8.9 88.6 0.5402 18.6
    CeO2-MNOx(NS) 8.9 90.3 0.5408 17.1
    a:calculated from the a value of the ceria (111) planes;b:calculated with the scherrer equation
    下载: 导出CSV

    表  2  CeO2及不同形貌CeO2-MNOx复合氧化物催化剂的H2-TPR定量分析

    Table  2  H2-TPR quantitative analysis of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    Sample Peak position t/℃ H2 uptake /(μmol·g-1) Theoretical H2 uptake /(μmol·g-1)a
    CeO2 500 1820 2904
    CeO2-MNOx(SP) 240, 310, 394, 452 242, 363, 798, 605 2619
    CeO2-MNOx(OB) 246, 300, 404, 448 306, 353, 848, 746 2623
    CeO2-MNOx(NS) 248, 306, 400, 441 255, 423, 804, 473 2628
    a:theoretical H2 uptake was determined as the quantity of H2 required for the reduction of CeO2 and the mixed CeO2-MNOx oxides by assuming that CeO2 and MNOx (as MnO2) are stoichiometrically reduced to Ce2O3 and MnO, respectively
    下载: 导出CSV

    表  3  CeO2及不同形貌CeO2-MNOx复合氧化物催化剂的XPS分析

    Table  3  XPS analysis results of CeO2 and the mixed CeO2-MNOx oxides with different morphology

    Sample Content w/%
    Ce3+ Mn4+ Mn3+ Mn2+ O″
    CeO2 17.11 - - - 18.49
    CeO2-MNOx(SP) 19.19 20.84 27.16 52.00 34.88
    CeO2-MNOx(OB) 20.37 10.24 28.10 61.66 55.87
    CeO2-MNOx(NS) 18.25 34.15 15.97 49.88 28.47
    下载: 导出CSV
  • [1] SU S, BEATH A, GUO H, MALLETT C. An assessment of mine methane mitigation and utilisation technologies[J]. Prog Energy Combust Sci, 2005, 31(2):123-170. doi: 10.1016/j.pecs.2004.11.001
    [2] DEBBAGH M N, LECEA C S M D, PÉREZ-RAMÍREZ J. Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite:Comparison of CH4, CO, and their mixtures as reductants with or without excess O2[J]. Appl Catal B:Environ, 2007, 70(1/4):334-341.
    [3] LUO J J, XU H Y, LIU Y F, CHU W, JIANG C F, ZHAO X S. A facile approach for the preparation of biomorphic CuO-ZrO2 catalyst for catalytic combustion of methane[J]. Appl Catal A:Gen, 2012, 423/424:121-129. doi: 10.1016/j.apcata.2012.02.025
    [4] 张佳瑾, 李建伟, 朱吉钦, 王越, 陈标华.助剂对Cu-Mn复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J].催化学报, 2011, 32(8):1380-1386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201108012

    ZHANG Jia-jin, LI Jian-wei, ZHU Ji-qin, WANG Yue, CHEN Biao-hua. Effect of promoter on the performance of Cu-Mn complex oxide monolithic catalysts for lean methane catalytic combustion[J]. Chin J Catal, 2011, 32(8):1380-1386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201108012
    [5] SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008, 47(15):2884-2887. doi: 10.1002/(ISSN)1521-3773
    [6] TANG X F, CHEN J L, LI Y G, LI Y, XU Y D, SHEN W J. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts[J]. Chem Eng J, 2006, 118(1/2):119-125. https://www.sciencedirect.com/science/article/pii/S0022328X12000162
    [7] LI H J, QI G, TA N, ZHANG X J, LI W, SHEN W J. Morphological impact of manganese-cerium oxides on ethanol oxidation[J]. Catal Sci Technol, 2011, 1(9):1677-1682. doi: 10.1039/c1cy00308a
    [8] WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catal Commun, 2008, 9(13):2158-2162. doi: 10.1016/j.catcom.2008.04.021
    [9] LI J, ZHU P F, ZHOU R X. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources, 2011, 196(22):9590-9598. doi: 10.1016/j.jpowsour.2011.07.052
    [10] ZHANG Y G, QIN Z F, WANG G F, ZHU H Q, DONG M, LI S N, WU Z W, LI Z K, WU Z H, ZHANG J, HU T D, FAN W B, WANG J G. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B:Environ, 2013, 129(2):172-181. http://downloads.hindawi.com/journals/jchem/2017/2937108.xml
    [11] LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014, 144(2):498-506.
    [12] MA C J, WEN Y Y, YUE Q Q, LI A Q, ZHANG N W, GAI H J, ZHENG J B, CHEN B H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2[J]. RSC Adv, 2017, 7(43):27079-27088. doi: 10.1039/C7RA04037G
    [13] ZHANG P F, LU H F, ZHOU Y, ZHANG L, WU Z L, YANG S Z, SHI H L, ZHU Q L, CHEN Y F, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun, 2015, 6:8448-8458. doi: 10.1038/ncomms9448
    [14] TANG X F, LI Y G, HUANG X M, XU Y D, ZHU H Q, WANG J G, SHEN W J. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J]. Appl Catal B:Environ, 2006, 62(3/4):265-273. http://downloads.hindawi.com/journals/jchem/2017/2937108.xml
    [15] CEN W L, LIU Y, WU Z B, WANG H Q, WENG X L. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping[J]. Phys Chem Chem Phys, 2012, 14(16):5769-5777. doi: 10.1039/c2cp00061j
    [16] FRANCISCO M S P, MASTELARO V R, NASCENTE P A P, FLORENTINO A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts[J]. J Phys Chem B, 2001, 105(43):10515-10522. doi: 10.1021/jp0109675
    [17] 李树娜, 石奇, 李小军, 方振华, 孙平, 周跃花, 张杏梅, 杨晓慧.金属掺杂Ce-M(M=Fe、Ni和Cu)催化剂的CO低温氧化性能研究[J].燃料化学学报, 2017, 45(6):707-713. http://www.cjcatal.org/CN/abstract/abstract21892.shtml

    LI Shu-na, SHI Qi, LI Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol, 2017, 45(6):707-713. http://www.cjcatal.org/CN/abstract/abstract21892.shtml
    [18] 李岚, 胡庚申, 鲁继青, 罗孟飞. CeO2基固溶体氧缺位拉曼光谱表征的研究进展[J].物理化学学报, 2012, 28(5):1012-1020. doi: 10.3866/PKU.WHXB201203052

    LI Lan, HU Geng-shen, LU Ji-qing, LUO Meng-fei. Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy[J]. Acta Phys-Chim Sin, 2012, 28(5):1012-1020. doi: 10.3866/PKU.WHXB201203052
    [19] HERNÁNDEZ W Y, CENTENO M A, ROMERO-SARRIA F, ODRIOZOLA J A. Synthesis and characterization of Ce1-xEuxO2-x/2 mixed oxides and their catalytic activities for CO oxidation[J]. J Phys Chem C, 2009, 113(14):5629-5635. doi: 10.1021/jp8092989
    [20] HUA G M, ZHANG L D, FEI G T, FANG M. Enhanced catalytic activity induced by defects in mesoporous ceria nanotubes[J]. J Mater Chem, 2012, 22(14):6851-6855. doi: 10.1039/c2jm13610d
    [21] BÊCHE E, CHARVIN P, PERARNAU D, ABANADES S, FLAMANT G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surf Interface Anal, 2008, 40(3/4):264-267. doi: 10.1002/sia.2686/full®ionCode=US-WA&identityKey=1bf82d9d-3013-4526-8c2f-11ee6f8097ab
    [22] LI S N, ZHANG Y G, LI X J, YANG X H, LI Z K, WANG R Y, ZHU H Q. Preferential oxidation of CO in H2-rich stream over Au/CeO2-NiO catalysts:Effect of the preparation method[J]. Catal Lett, 2018, 148(1):328-340. doi: 10.1007/s10562-017-2231-1
    [23] SKORODUMOVA N V, SIMAK S I, LUNDQVIST B I, ABRIKOSOV I A, JOHANSSON B. Quantum origin of the oxygen storage capability of ceria[J]. Phys Rev Lett, 2002, 89(16):166601-1166601-4. doi: 10.1103/PhysRevLett.89.166601
    [24] 袁善良, 兰海, 薄其飞, 张彪, 肖熙, 蒋毅. TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响[J].燃料化学学报, 2017, 45(2):243-248. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201702015&dbname=CJFD&dbcode=CJFQ

    YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. J Fuel Chem Technol, 2017, 45(2):243-248. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201702015&dbname=CJFD&dbcode=CJFQ
    [25] HAMOUDI S, LARACHI F, ADNOT A, SAYARI A. Characterization of spent MnO2/CeO2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS[J]. J Catal, 1999, 185(2):333-334. doi: 10.1006/jcat.1999.2519
    [26] DELIMARIS D, IOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B:Environ, 2008, 84(1/2):303-312. http://downloads.hindawi.com/journals/jchem/2017/2937108.xml
    [27] ZHAO P, WANG C N, HE F, LIU S T. Effect of ceria morphology on the activity of MnOx/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. RSC Adv, 2014, 4(86):45665-45672. doi: 10.1039/C4RA07843H
    [28] ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011, 257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108
    [29] TROVARELLI A. Catalytic properties of ceria and CeO-containing materials[J]. Catal Rev, 1996, 38(4):439-520. doi: 10.1080/01614949608006464
    [30] LU H, KONG X, HUANG H, ZHOU Y, CHEN Y. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015, 32(6):102-107. https://www.sciencedirect.com/science/article/pii/S1001074215001369
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  63
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-04-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回