留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙对焦炭非均相还原NO的微观作用机理:DFT研究

张秀霞 谢苗 伍慧喜 吕晓雪 林日亿 周志军

张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军. 钙对焦炭非均相还原NO的微观作用机理:DFT研究[J]. 燃料化学学报(中英文), 2020, 48(2): 163-171.
引用本文: 张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军. 钙对焦炭非均相还原NO的微观作用机理:DFT研究[J]. 燃料化学学报(中英文), 2020, 48(2): 163-171.
ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 163-171.
Citation: ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 163-171.

钙对焦炭非均相还原NO的微观作用机理:DFT研究

基金项目: 

中央高校基本科研业务费专项资金 18CX02073A

国家自然科学基金 51874333

详细信息
  • 中图分类号: X511

Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study

Funds: 

The project was supported by the Fundamental Research Funds for the Central Universities 18CX02073A

National Natural Science Foundation of China 51874333

More Information
  • 摘要: 基于密度泛函理论、结合电子结构分析和Mayer键级变化研究了钙对焦炭非均相还原NO的微观作用机理。对焦炭模型进行电子定域化函数和静电势极值点分析发现,焦炭边缘未饱和的碳原子周边表现出高的电子定域性,体系静电势最小值为-101.1 kJ/mol,边缘碳活性位存在孤对电子。钙的添加可促进第一个NO分子在焦炭边缘的吸附,但对第二个NO分子的吸附影响不大。钙的添加不改变NO在焦炭边缘的非均相还原反应路径,但可将决速步的活化能由124.4 kJ/mol降至91.9 kJ/mol。动力学分析发现添加钙后,非均相还原反应的指前因子增大,焦炭边缘的活化位点增多,有利于加快NO非均相还原反应的进行。
  • 图  1  焦炭模型及其电子结构

    Figure  1  Char model and its electronic structure

    图  2  NO非均相还原反应中间组分的几何构型(键长: nm)

    Figure  2  Geometric configurations of intermediate components in NO-char heterogeneous reaction (bond length unit: nm)

    图  3  NO在焦炭边缘非均相还原的势能面

    Figure  3  Reaction potential energy surface

    图  4  反应过程中重要原子间的键级变化曲线

    Figure  4  Mayer bond orders along IRC of transition states

    (a): mayer bond orders along IRC of TS1; (b): mayer bond orders along IRC of TS2; (c): mayer bond orders along IRC of TS3

    图  5  修饰Ca的焦炭模型及其电荷分布

    Figure  5  Geometric configuration of Ca-decorated char (a) and distribution of Hirshfeld atomic charges (b) (bond length: nm; atomic charge: a.u.)

    图  6  Ca修饰焦炭非均相还原NO反应中间组分几何构型(键长单位:nm)

    Figure  6  Geometrical parameters for stable species and transition states in NO heterogeneous reduction by Ca-decorated char (bond length: nm)

    图  7  反应过程的反应势能面

    Figure  7  Reaction potential energy surface

    图  8  反应过程中重要原子间的键级变化曲线

    Figure  8  Mayer bond orders along IRC of transition states

    (a): mayer bond orders along IRC of CaTS1; (b): mayer bond orders along IRC of CaTS2; (c): mayer bond orders along IRC of CaTS3

    图  9  经典过渡态理论得到的反应速率常数

    Figure  9  Rate constant k calculated from cTST

    表  1  拟合所得反应动力学参数

    Table  1  Fitted kinetic parameters of Arrhenius expressions

    Reaction A/s-1 Ea/(kJ·mol-1)
    IM4→P+N2 2.63×1013 128.3
    CaIM4→CaP+N2 4.16×1013 96.9
    下载: 导出CSV
  • [1] 岑可法, 倪明江, 高翔, 骆仲泱, 王智化, 郑成航.煤炭清洁发电技术进展与前景[J].中国工程科学, 2015, 17(9):49-55. doi: 10.3969/j.issn.1009-1742.2015.09.009

    CEN Ke-fa, NI Ming-jiang, GAO Xiang, LUO Zhong-yang, WANG Zhi-hua, ZHENG Cheng-hang. Progress and prospects on clean coal technology for power generation[J]. Eng Sci, 2015, 17(9):49-55. doi: 10.3969/j.issn.1009-1742.2015.09.009
    [2] ULUSOY B, WU H, LIN W G, KARLSTRÖM O, LI S G, SONG W L, GLARBORG P, DAM-JOHANSEN K. Reactivity of sewage sludge, RDF, and straw chars towards NO[J]. Fuel, 2019, 236:297-305. doi: 10.1016/j.fuel.2018.08.164
    [3] SHU Y, WANG H, ZHU J, TIAN G, HUANG J, ZHANG F. An experimental study of heterogeneous NO reduction by biomass reburning[J]. Fuel Process Technol, 2015, 132:111-117. doi: 10.1016/j.fuproc.2014.12.039
    [4] LU P, HAO J T, YU W, ZHU X M, DAI X. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning[J]. Fuel, 2016, 170:60-66. doi: 10.1016/j.fuel.2015.12.037
    [5] 周昊, 刘瑞鹏, 刘子豪, 程明, 岑可法.碱金属对焦炭燃烧过程中NOx释放的影响[J].煤炭学报, 2015, 40(5):1160-1164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201505028

    ZHOU Hao, LIU Rui-peng, LIU Zi-hao, CHENG Ming, CEN Ke-fa. Influence of alkali metal on the evolution of NOx during coke combustion[J]. J China Coal Soc, 2015, 40(5):1160-1164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201505028
    [6] WU X Y, SONG Q, ZHAO H B, YAO Q. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy Fuels, 2015, 29(11):7566-7571. doi: 10.1021/acs.energyfuels.5b01550
    [7] 钟北京, 施卫伟, 傅维标.焦炭再燃过程中催化剂对NO还原的影响[J].热能动力工程, 2001, 16(5):259-274.

    ZHONG Bei-jing, SHI Wei-wei, FU Wei-biao. Effect of catalyst on NO reduction during reburning of coal char[J]. J Eng Therm Energy Power, 2001, 16(5):259-274.
    [8] 徐力, 韦振祖, 高建民, 王剑, 赵伟, 程健, 杜谦, 赵广播, 吴少华.制焦条件和催化剂对大颗粒焦炭还原NO影响[J].哈尔滨工业大学学报, 2016, 48(7):53-57.

    XU Li, WEI Zhen-zu, GAO Jian-min, WANG Jian, ZHAO Wei, CHENG Jian, DU Qian, ZHAO Guang-bo, WU Shao-hua. Effect of charring condition and catalyst on NO reduction by large char particles[J]. J Harbin Inst Technol, 2016, 48(7):53-57.
    [9] 吕俊复, 柯希玮, 蔡润夏, 张缦, 吴玉新, 杨海瑞, 张海.循环流化床燃烧条件下焦炭表面NOx还原机理研究进展[J].煤炭转化, 2018, 41(1):1-12. (LÜ doi: 10.3969/j.issn.1004-4248.2018.01.001

    Lü Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU YU-xin, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over chars in fluidized bed combustion[J]. Coal Convers, 2018, 41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001
    [10] ZHAO Z B, QIU J S, LI W, CHEN H K, LI B Q. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82(8):949-957. doi: 10.1016/S0016-2361(02)00394-0
    [11] 信晶, 尹书剑, 孙保民, 朱恒毅, 罗肖, 黄强, 肖海平.掺杂金属化合物强化焦炭-NO反应的析因试验研究[J].煤炭学报, 2015, 40(5):1174-1180.

    XIN Jin, YIN Shu-jian, SUN Bao-min, ZHU Heng-yi, LUO Xiao, HUANG Qiang, XIAO Hai-ping. Factorial experimental study of analysis of the char-NO reaction intensified by doped metallic compounds[J]. J China Coal Soc, 2015, 40(5):1174-1180.
    [12] LIU L, JIN J, LIN Y Y, HOU F X, LI S J. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016, 106:212-220. doi: 10.1016/j.energy.2016.02.148
    [13] 温正城, 王智化, 周俊虎, 周志军, 刘建忠, 岑可法.金属钙对煤焦异相还原NO催化机理的量子化学研究[J].燃烧科学与技术, 2009, 15(6):505-510. doi: 10.3321/j.issn:1006-8740.2009.06.005

    WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009, 15(6):505-510. doi: 10.3321/j.issn:1006-8740.2009.06.005
    [14] 陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁.含氮煤焦还原NO反应路径研究[J].燃料化学学报, 2019, 47(3):279-286. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903004

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019, 47(3):279-286. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903004
    [15] 张秀霞, 周志军, 周俊虎, 刘建忠, 岑可法.煤粉再燃中煤焦异相还原NO机理的量化研究[J].燃烧科学与技术, 2011, 17(2):155-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201102010

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanism of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol, 2011, 17(2):155-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201102010
    [16] GAO Z Y, YANG W J, DING X L, DING Y, YAN W P. Theoretical research on heterogeneous reduction of N2O by char[J]. Appl Therm Eng, 2017, 126:28-36. doi: 10.1016/j.applthermaleng.2017.07.166
    [17] ZHANG H, JIANG X M, LIU J X, LIU J G. Theoretical study on the reactions originating from solid char(N):Radical preference and possible surface N2 formation reactions[J]. Ind Eng Chem Res, 2019, 58:18021-18026. doi: 10.1021/acs.iecr.9b02999
    [18] ZHAO T, SONG W L, FAN C G, LI S, GLARBORG P, YAO X. Density functional theory study of the role of a carbon-oxygen single bond group in the NO-Char reaction[J]. Energy Fuels, 2018, 32(7):7734-7744. doi: 10.1021/acs.energyfuels.8b01124
    [19] MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A, 2007, 111:11683-11700. doi: 10.1021/jp073974n
    [20] FRISCH M L, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D.01; Gaussian, Inc., Wallingford CT, 2009.
    [21] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰.枣泉煤分子模型构建及热解的分子模拟[J].化工学报, 2019, 70(4):1522-1531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201904034

    FENG Wei, GAO Hong-feng, WANG Gui, WU Lang-lang, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC J, 2019, 70(4):1522-1531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201904034
    [22] QIU Y, ZHONG W, SHAO Y, YU A. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion[J]. Powder Technol, 2020, 361:337-348. doi: 10.1016/j.powtec.2019.07.103
    [23] XU F, LIU H, WANG Q, PAN S, ZHAO D, LIU Y. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019, 256:115884. doi: 10.1016/j.fuel.2019.115884
    [24] ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253:910-920. doi: 10.1016/j.fuel.2019.05.085
    [25] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998, 36:1061-1070. doi: 10.1016/S0008-6223(98)00078-5
    [26] SANDER M, RAJ A, INDERWILDI O, KRAFT M, KURETI S, BOCKHORN H. The simultaneous reduction of nitric oxide and soot in emissions from diesel engines[J]. Carbon, 2009, 47:866-875. doi: 10.1016/j.carbon.2008.11.043
    [27] OYARZÚN A M, RADOVIC L R, KYOTANI T. An update on the mechanism of the graphene-NO reaction[J]. Carbon, 2015, 86:58-68. doi: 10.1016/j.carbon.2015.01.020
    [28] KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441. doi: 10.1021/jp9845928
    [29] 卢天, 陈飞武.电子定域化函数的含义与函数形式[J].物理化学学报, 2011, 27(12):2786-2792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201112009

    LU Tian, CHEN Fei-wu. Meaning and functional form of the electron localization function[J]. Acta Phys-Chem Sin, 2011, 27(2):2786-2792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201112009
    [30] LU T, CHEN F W. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012, 33:580-592. doi: 10.1002/jcc.22885
    [31] BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J]. J Chem Phys, 1990, 92(9):5397-5403. doi: 10.1063/1.458517
    [32] 张秀霞.焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D].杭州: 浙江大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012488726.htm

    ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012488726.htm
    [33] ZHOU Z J, ZHANG X X, ZHOU J H, LIU J Z, CEN K F. A Molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Sources, Part A, 2014, 36(2):158-116. doi: 10.1080/15567036.2010.506477
    [34] 信晶, 孙保民, 朱恒毅, 尹书剑, 张振星, 钟亚峰.焦炭边缘模型异相还原NO的Mayer键级变化分析[J].煤炭学报, 2014, 39(4):771-775. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201404031.htm

    XIN Jing, SUN Bao-min, ZHU Heng-yi, YIN Shu-jian, ZHANG Zhen-xing, ZHONG Ya-feng. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014, 39(4):771-775. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201404031.htm
    [35] ZHAO D, LIU H, SUN C L, XU L F, CAO Q X. DFT study of the catalytic effect of Na on the gasification of carbon-CO2[J]. Combust Flame, 2018, 197:471-486. doi: 10.1016/j.combustflame.2018.09.002
    [36] MA X C, LI L Q, CHEN R F, WANG C Z, ZHOU K, LI H L. Doping of alkali metals in carbon frameworks for enhancing CO2 capture:A theoretical study[J]. Fuel, 2019, 236:942-948. doi: 10.1016/j.fuel.2018.08.166
    [37] SHEN F H, LIU J, WU D W, DONG Y C, ZHANG Z. Development of O2 and NO Co-doped porous carbon as a high-capacity mercury sorbent[J]. Environ Sci Technol, 2019, 53:1725-1731. doi: 10.1021/acs.est.8b05777
    [38] LIU J, ZHANG X, LU Q, SHAW A, HU B, JIANG X, DONG C. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst, 2019, 92(3):604-612. https://www.researchgate.net/publication/269357602_Effects_of_Alkali_and_Alkaline_Earth_Metals_on_NOx_Reduction_in_Coke_Combustion
    [39] 邹潺, 王春波, 邢佳颖.煤燃烧过程中砷与氮氧化物的反应机理[J].燃料化学学报, 2019, 47(2):138-143. doi: 10.3969/j.issn.0253-2409.2019.02.002

    ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. J Fuel Chem Technol, 2019, 47(2):138-143. doi: 10.3969/j.issn.0253-2409.2019.02.002
    [40] BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011, 49(5):1561-1567. doi: 10.1016/j.carbon.2010.12.023
    [41] GARRETT B C, TRUHLAR D G. Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactions[J]. J Phys Chem, 1979, 83(1):200-203. doi: 10.1021/j100464a026
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  88
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2020-01-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回