留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究

郭天雨 刘粟侥 青明 冯景丽 吕振刚 王洪 杨勇

郭天雨, 刘粟侥, 青明, 冯景丽, 吕振刚, 王洪, 杨勇. 原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究[J]. 燃料化学学报(中英文), 2020, 48(1): 75-82.
引用本文: 郭天雨, 刘粟侥, 青明, 冯景丽, 吕振刚, 王洪, 杨勇. 原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究[J]. 燃料化学学报(中英文), 2020, 48(1): 75-82.
GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, Lü Zhen-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 75-82.
Citation: GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, Lü Zhen-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 75-82.

原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究

详细信息
  • 中图分类号: O643

In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance

More Information
  • 摘要: 将原位XRD反应装置与在线气相色谱技术结合,研究了不同H2O含量(4.36%、1.68%、0.56%)条件下单一相Fe5C2的氧化速率,并考察了不同Fe5C2氧化程度(0、25%、55%、68%)和氧化次数对其费托合成(F-T)反应性能的影响。研究结果表明,Fe5C2物相的氧化速率随H2O含量的提高而逐渐增加,同时H2O氧化使Fe5C2颗粒粒径减小,暴露出更多活性位点,造成F-T反应活性提高,且氧化程度越大,活性提高越明显;随着氧化次数的增加,F-T反应活性逐渐提高,但CH4选择性增加,C5+选择性逐渐降低。
  • 图  1  原位XRD反应装置示意图

    Figure  1  Schematic diagram of the in situ XRD reactor

    1: normal gas cylinder; 2: needle valve; 3: pressure reducing valve; 4: mass flow controller; 5: check valve; 6: bubbler; 7: in situ capillary reactor setup (a: thermocouple, b: silica capillary, c: catalyst sample, d: silica wool); 8: back pressure valve; 9: gas chromatography (agilent 6890 N)

    图  2  不同水含量0.56%(a)、1.68%(b)、4.36%(c)条件下Fe5C2催化剂的XRD谱图

    Figure  2  XRD patterns of Fe5C2 catalysts under different H2O contents 0.56%(a), 1.68%(b), 4.36%(c)

    图  3  Fe5C2的相对含量(a)及氧化速率(b)

    Figure  3  Relative contents of Fe5C2 catalysts (a) and oxidation rate (b)

    图  4  不同水含量条件下样品中Fe5C2 (a)与Fe3O4 (b)的晶粒粒径变化

    Figure  4  Particle size of Fe5C2 (a) and Fe3O4 (b) under different H2O contents

    图  5  不同反应时间Fe5C2相对含量以及CO转化率

    Figure  5  Relative contents of Fe5C2 and CO conversion in different times

    图  6  FTS与WGS的CO转化率

    Figure  6  CO conversion in FTS and WGS

    (x(WGS) = xCO * sCO2, x(FTS) =1-x(WGS))

    图  7  不同反应时间Fe5C2、Fe3O4的晶粒粒径

    Figure  7  Particle size of Fe5C2 and Fe3O4 under different reaction time

    图  8  不同反应时间Fe5C2和Fe3O4的XRD谱图

    Figure  8  XRD patterns of the samples prepared at different reaction times

    图  9  不同氧化程度Fe5C2催化剂上CO转化率(a)物相相对含量(b)

    Figure  9  CO conversion (a) and relative abundance (b) of Fe5C2 under different oxidation degrees

    (0, 25%, 55%, 68%)

    图  10  不同氧化程度Fe5C2催化剂上FTS反应的CO转化率

    Figure  10  CO conversion in FTS of Fe5C2 under different oxidation degrees

    (0, 25%, 55%, 68%)

    图  11  不同氧化程度反应中Fe5C2的晶粒粒径

    Figure  11  Particle size of Fe5C2 catalyst under different oxidation degrees

    (0, 25%, 55%, 68%)

    图  12  反复氧化三次的反应中CO转化率(a)和Fe5C2相的相对含量(b)

    Figure  12  CO conversion (a) and relative content of Fe5C2 (b) in the oxidation condition for three times

    图  13  反复氧化三次的反应中FTS反应的CO转化率

    Figure  13  CO conversion in FTS in the oxidation condition for three times

    图  14  三次反应中产物的选择性

    Figure  14  Products selectivity after three oxidation times

  • [1] 戴德立. 2018BP世界能源统计年鉴[Z].http://www.bp.Com/papercopies. 2018-6.

    DUDLEY B. BP Statistical Review of World Energy[Z]. http://www.bp.com/papercopies. 2018-6.
    [2] RÖPER M. Fischer-Tropsch Synthesis[C]// Catalysis in C 1 Chemistry. 1983.
    [3] ANDERSO R B, KOLBE H, RALEK M. The Fischer-Tropsch Synthesis[M]. NewYork: Academic Press, 1984.
    [4] 温晓东, 杨勇, 相宏伟, 焦海军, 李永旺.费托合成铁基催化剂的设计基础:从理论走向实践[J].中国科学:化学, 2017, 47(11): 1298-1311. http://www.cnki.com.cn/Article/CJFDTotal-JBXK201711007.htm

    WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. Design basis of fischer-tropsch synthesis of iron-based catalysts: from theory to practice[J]. Chin Sci: Chem, 2017, 47(11): 1298-1311. http://www.cnki.com.cn/Article/CJFDTotal-JBXK201711007.htm
    [5] WANG Y, KANG J, ZHANG Q. Research advances in catalysts for fischer-tropsch synthesis[J]. Pet Technol, 2009, 38(12): 1255-1263.
    [6] SMIT E D, WECKHUYSEN B M. ChemInform abstract: The renaissance of iron-based Fischer-Tropsch synthesis: The multifaceted catalyst deactivation behavior[J]. ChemInform, 2010, 40(19): 2758-2781. http://www.researchgate.net/publication/250483564_ChemInform_Abstract_The_Renaissance_of_Iron-Based_Fischer-Tropsch_Synthesis_The_Multifaceted_Catalyst_Deactivation_Behavior
    [7] LI S, ROBERT J O, MEITZNER G D. Structural analysis of unpromoted Fe-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy[J]. Appl Catal A: Gen, 2001, 219(1): 215-222. doi: 10.1016-S0926-860X(01)00694-9/
    [8] DUVENHAGE D J, ESPINOZA R L, COVILLE N J. fischer-tropsch precipitated iron catalysts: Deactivation studies[J]. Stud Surf Sci Catal, 1994, 88: 351-358. doi: 10.1016/S0167-2991(08)62760-3
    [9] BUKUR D B, OKABE K, ROSYNEK M P. Activation studies with a precipitated iron catalyst for fischer-tropsch synthesis. Ⅰ: Characterization studies[J]. J Catal, 1995, 155(2): 353-365. doi: 10.1006/jcat.1995.1217
    [10] BARTHOLOMEW C H, STOKER M W, MANSKER L. Effects of pretreatment, reaction, and promoter on microphase structure and fischer-tropsch activity of precipitated iron catalysts[J]. Stud Surf Sci Catal, 1999, 126: 265-272. doi: 10.1016/S0167-2991(99)80475-3
    [11] REYMOND J P, MERIAUDEAU P, TEICHNER S J. Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3 during the reaction of carbon monoxide and hydrogen[J]. J Catal, 1982, 75(1): 39-48. http://www.sciencedirect.com/science/article/pii/0021951782901191
    [12] BUTT J B. Carbide phases on iron-based fischer-tropsch synthesis catalysts part Ⅰ: Characterization studies[J]. Catal Lett, 1990, 7(1/4): 61-81. doi: 10.1007/BF00764492
    [13] RAUPP G B, DELGASS W N. Mössbauer investigation of supported Fe and FeNi catalysts: Ⅱ. Carbides formed fischer-tropsch synthesis[J]. J Catal, 1979, 58(3): 348-360. doi: 10.1016/0021-9517(79)90274-4
    [14] MACHOCKI K. Formation of carbonaceous deposit and its effect on carbon monoxide hydrogenation on iron-based catalysts[J]. Appl Catal: Gen, 1991, 70(1): 237-252. doi: 10.1016/S0166-9834(00)84167-6
    [15] DWYER D J, HARDENBERGH J H. The catalytic reduction of carbon monoxide over iron surfaces: A surface science investigation[J]. Chem Inform, 1984, 87(1): 66-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/096032719601500807
    [16] DRY M E. Catalysis-Science and Technology[M]. NewYork: Springer Verlag, 1988: 160-255.
    [17] MANSKER L D, JIN Y, BUKUR D B. Characterization of slurry phase iron catalysts for fischer-tropsch synthesis[J]. Appl Catal A: Gen, 1999, 186(s 1/2): 277-296. http://www.sciencedirect.com/science/article/pii/S0926860X99001490
    [18] WELLER S, HOFER L J E, ANDERSON R B. The role of bulk cobalt carbide in the Fischer-Tropsch synthesis1[J]. J Am Chem Soc, 1948(2): 799-801. http://www.researchgate.net/publication/231491002_The_Role_of_Bulk_Cobalt_Carbide_in_the_FischerTropsch_Synthesis1
    [19] BUKUR D B, NOWICKI L, MANNE R K. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: Ⅱ. Reaction studies[J]. J Catal, 1995, 155(2): 366-375. doi: 10.1006/jcat.1995.1218
    [20] BARTHOLOMEW C H, BOWMAN R M. Sulfur poisoning of cobalt and iron Fischer-Tropsch catalysts[J]. Appl Catal A: Gen, 1985, 15(1): 59-67. doi: 10.1016/S0166-9834(00)81487-6
    [21] KRITZINGER J A. The role of sulfur in commercial iron-based Fischer-Tropsch catalysis with focus on C2-product selectivity and yield[J]. Catal Today, 2002, 71(3): 307-318. http://www.sciencedirect.com/science/article/pii/S0920586101004576
    [22] PENDYALA V R R, JACOBS G, MOHANDAS J C. Fischer-Tropsch synthesis: Effect of water over iron-based catalysts[J]. Catal Lett, 2010, 140(3/4): 98-105. doi: 10.1007/s10562-010-0452-7
    [23] ANDERSON R.B. Kinetics of the Fischer-Tropsch synthesis on iron catalysts[J]. Synfacts, 1964, 44(2): 1065-1070.
    [24] SATTERFIELD C N, HANLON R T, TUNG S E. Effect of water on the iron-catalyzed Fischer-Tropsch synthesis[J]. Ind Eng Chem Prod Res Dev, 1986, 25(3): 407-414. doi: 10.1021/i300023a007
    [25] BELL W K, HAAG W O. Conversion of synthesis gas to liquid hydrocarbons gel: US 4978689[P]. 1990-12-18.
    [26] GALVISl H M T, BITTER J H, DAVIDIAN T. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215. doi: 10.1021/ja304958u
    [27] ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985, 95(1): 325-332. doi: 10.1016/0021-9517(85)90038-7
  • 加载中
图(15)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  143
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-27
  • 修回日期:  2019-10-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回