留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 and their catalytic performance in the conversion of methanol to hydrocarbons

LI Li-ping GU Ling JIN Chun FEI Peng

李丽萍, 古玲, 晋春, 费鹏. SiGeAl-ITQ-13和SiAl(B)-ITQ-13分子筛的合成及其甲醇转化制烃催化性能[J]. 燃料化学学报(中英文), 2017, 45(10): 1244-1250.
引用本文: 李丽萍, 古玲, 晋春, 费鹏. SiGeAl-ITQ-13和SiAl(B)-ITQ-13分子筛的合成及其甲醇转化制烃催化性能[J]. 燃料化学学报(中英文), 2017, 45(10): 1244-1250.
LI Li-ping, GU Ling, JIN Chun, FEI Peng. Synthesis of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 and their catalytic performance in the conversion of methanol to hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1244-1250.
Citation: LI Li-ping, GU Ling, JIN Chun, FEI Peng. Synthesis of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 and their catalytic performance in the conversion of methanol to hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1244-1250.

SiGeAl-ITQ-13和SiAl(B)-ITQ-13分子筛的合成及其甲醇转化制烃催化性能

详细信息
  • 中图分类号: O643.32

Synthesis of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 and their catalytic performance in the conversion of methanol to hydrocarbons

More Information
  • 摘要: 采用直接水热合成和后合成两种方法制备Al-ITQ-13分子筛,用于催化甲醇转化制备烃类化合物。采用XRD、27Al MAS NMR、NH3-TPD、Py-FTIR和SEM等技术对所合成样品进行了表征。结果表明,两种方法制备的Al-ITQ-13结晶度都较高,且晶体形貌为薄片。与ZSM-5相比,Al-ITQ-13在甲醇转化反应中显示出较高的丙烯选择性、较高的丙烯/乙烯产物比以及较好的催化稳定性。同时,由于后合成所得到的SiAl(B)-ITQ-13强酸量减少,其催化性能优于直接合成的SiGeAl-ITQ-13。
  • Figure  1  27Al MAS NMR spectra of calcined SiAl(B)-ITQ-13 zeolites exchanged in different concentrations of Al(NO3)3 solution

    Figure  2  XRD patterns of the calcined SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 zeolites

    Figure  3  SEM images of the as-synthesized SiGeAl-ITQ-13, SiAl(B)-ITQ-13 and ZSM-5 zeolites

    (a): SiGeAl-ITQ-13; (b): SiAl(B)-ITQ-13; (c): ZSM-5

    Figure  4  27Al MAS NMR spectra of the calcined SiGeAl-ITQ-13, SiAl(B)-ITQ-13 and ZSM-5 zeolites

    Figure  5  NH3-TPD profiles of the as-synthesized SiGeAl-ITQ-13, SiAl(B)-ITQ-13 and ZSM-5 zeolites

    Figure  6  Methanol conversions along with the time on stream in MTH over the SiGeAl-ITQ-13, SiAl(B)-ITQ-13 and ZSM-5 zeolites

    Table  1  Chemical compositions and textural properties of the as-synthesized zeolites

    ZeoliteMolar ratio SBET/(m2·g-1) vmicro /(cm3·g-1)
    gelproduct
    SiGeAl-ITQ-13Si/Ge=30(Si+Ge)/Al=100Si/Ge=31(Si+Ge)/Al=874160.13
    SiAl(B)-ITQ-13aSi/B=60Si/Al=954290.14
    ZSM-5Si/Al=100Si/Al=904250.17
    a: SiAl(B)-ITQ-13 is obtained by a post-synthesis through ion exchange from a starting ITQ-13 sample of Si/B=74
    下载: 导出CSV

    Table  2  Acidity of SiGeAl-ITQ-13 and SiAl(B)-ITQ-13 determined by Py-FTIR

    ZeoliteBrφnsted acidity c /(μmol·g-1)Lewis acidity c /(μmol·g-1)
    150℃250℃350℃150℃250℃350℃
    SiGeAl-ITQ-1325.919.812.07.65.13.9
    SiAl(B)-ITQ-1312.810.38.212.27.06.9
    下载: 导出CSV

    Table  3  Product distribution for MTH over various as-synthesized catalysts a

    ZeoliteProduct selectivity s/%C3=/C2=
    C1C2C3C4C2=C3=C4=C5+baromatics
    SiGeAl-ITQ-130.70.11.83.17.940.723.717.14.95.2
    SiAl(B)-ITQ-130.60.11.02.75.543.223.819.83.27.9
    ZSM-51.20.23.410.412.227.015.916.213.62.2
    a: reaction conditions: 450℃, WHSV=1.0h-1, CH3OH/N2=1/4;
    b: for C5 and higher hydrocarbons, aromatics are excluded
    下载: 导出CSV
  • [1] STÖCKER M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29:3-48. doi: 10.1016/S1387-1811(98)00319-9
    [2] LIU Z, SUN C, WANG G, WANG Q, CAI G. New progress in R&D of lower olefin synthesis[J]. Fuel Process Technol, 2000, 62:161-172. doi: 10.1016/S0378-3820(99)00117-4
    [3] YOKOI T, YOSHIOKA M, IMAI H, TATSUMI T. Diversification of RTH-Type Zeolite and Its Catalytic Application[J]. Angew Chem Int Ed, 2009, 48:9884-9887. doi: 10.1002/anie.v48:52
    [4] BLEKEN F, SKISTAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections:comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011, 13:2539-2549. doi: 10.1039/C0CP01982H
    [5] WESTGARD ERICHSEN M, SVELLE S, OLSBYE U. H-SAPO-5 as methanol-to-olefins (MTO) model catalyst:Towards elucidating the effects of acid strength[J]. J Catal, 2013, 298:94-101. doi: 10.1016/j.jcat.2012.11.004
    [6] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51:5810-5831. doi: 10.1002/anie.201103657
    [7] CHANG C D. The New Zealand Gas-to-Gasoline plant:An engineering tour de force[J]. Catal Today, 1992, 13:103-111. doi: 10.1016/0920-5861(92)80190-X
    [8] CORMA A, PUCHE M, REY F, SANKAR G, TEAT S J. A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9-and 10-rings[J]. Angew Chem Int Ed, 2003, 42:1156-1159. doi: 10.1002/anie.200390304
    [9] LIU S, XIE S, XU G, XU L, ZHU X. ITQ-13 molecular sieve catalyst for hydrocarbon catalytic conversion reaction, comprises ITQ-13 molecular sieve with silicon/aluminum ratio of larger than specified value, and binder: CN, 101530812A[P]. 2009-09-16.
    [10] CASTAÑEDA R, CORMA A, FORNÉS V, MARTÍNEZ-TRIGUERO J, VALENCIA S. Direct Synthesis of a member ring zeolite (Al-ITQ-13):A highly shape-selective catalyst for catalytic cracking[J]. J Catal, 2006, 238:79-87. doi: 10.1016/j.jcat.2005.11.038
    [11] ZENG P, LIANG Y, JI S, SHEN B, LIU H, WANG B, ZHAO H, LI M. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energ Chem, 2014, 23:193-200. doi: 10.1016/S2095-4956(14)60135-2
    [12] SKISTAD W, TEKETEL S, BLEKEN F L, BEATO P, BORDIGA S, NILSEN M H, OLSBYE U, SVELLE S, LILLERUD K P. Methanol conversion to hydrocarbons (MTH) over H-ITQ-13(ITH) zeolite[J]. Top Catal, 2014, 57:143-158. doi: 10.1007/s11244-013-0170-7
    [13] LI L, CHEN Y, XU S, LI J, DONG M, LIU Z, JIAO H, WANG J, FAN W. Oriented control of Al locations in the framework of Al-Ge-ITQ-13 for catalyzing methanol conversion to propene[J]. J Catal, 2016, 344:242-251. doi: 10.1016/j.jcat.2016.09.007
    [14] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141:347-354. doi: 10.1006/jcat.1993.1145
    [15] ENGELHARDT G, MICHEL D. High-resolution solid-state NMR of silicates and zeolites[M]. New York, John Wiley and Sons, NY, 1987.
    [16] KENTGENS A P M, SCHOLLE K F M G J, VEEMAN W S. Effect of hydration on the local symmetry around aluminum in ZSM-5 zeolites studied by aluminum-27 nuclear magnetic resonance[J]. J Phys Chem, 1983, 87:4357-4360. doi: 10.1021/j100245a008
    [17] MIN H-K, PARK M B, HONG S B. Methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites[J]. J Catal, 2010, 271:186-194. doi: 10.1016/j.jcat.2010.01.012
    [18] MIRODATOS C, BARTHOMEUF D. Cracking of n-decane on zeolite catalysts:Enhancement of light hydrocarbon formation by the zeolite field gradient[J]. J Catal, 1988, 114:121-135. doi: 10.1016/0021-9517(88)90014-0
    [19] HE Y, LIU M, DAI C, XU S, WEI Y, LIU Z, GUO X. Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction[J]. Chinese J Catal, 2013, 34:1148-1158. doi: 10.1016/S1872-2067(12)60579-8
    [20] CHOUDHARY V R, BANERJEE S, PANJALA D. Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite:effect of space velocity[J]. Microporous Mesoporous Mater, 2002, 51:203-210. doi: 10.1016/S1387-1811(01)00483-8
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  30
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-09-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-10-10

目录

    /

    返回文章
    返回