留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants

HE Kai-qiang SHI Meng-dan LI Yan JIANG Yang-hong LI Yuan-peng YUAN Chun-gang

何楷强, 史孟丹, 黎燕, 蒋洋红, 李远鹏, 苑春刚. 燃煤电厂煤及其燃烧副产物中砷形态分析[J]. 燃料化学学报(中英文), 2020, 48(11): 1310-1317.
引用本文: 何楷强, 史孟丹, 黎燕, 蒋洋红, 李远鹏, 苑春刚. 燃煤电厂煤及其燃烧副产物中砷形态分析[J]. 燃料化学学报(中英文), 2020, 48(11): 1310-1317.
HE Kai-qiang, SHI Meng-dan, LI Yan, JIANG Yang-hong, LI Yuan-peng, YUAN Chun-gang. Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1310-1317.
Citation: HE Kai-qiang, SHI Meng-dan, LI Yan, JIANG Yang-hong, LI Yuan-peng, YUAN Chun-gang. Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1310-1317.

燃煤电厂煤及其燃烧副产物中砷形态分析

基金项目: 

the National Key R & D Program of China 2018YFB0605101

the Fundamental Research Funds for the Central Universities 2018QN088

详细信息
  • 中图分类号: TK16

Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants

Funds: 

the National Key R & D Program of China 2018YFB0605101

the Fundamental Research Funds for the Central Universities 2018QN088

More Information
    Corresponding author: YUAN Chun-gang, Tel:+86-312-7525512, Fax:+86-312-7525512, E-mail:cgyuan@ncepu.edu.cn
  • 摘要: 燃煤电厂煤中砷(As)的形态在燃烧过程中不可避免地会发生转化。煤及其副产物中砷的形态与人体健康和环境安全密切相关,亟待鉴别。然而目前针对煤燃烧相关产物中砷形态的前处理手段和分析方法尚缺乏。本研究采用高效液相色谱-氢化物发生-原子荧光光谱法(HPLC-HG-AFS)成功测定了电厂煤、粉煤灰和石膏中砷的形态,优化了仪器参数、提取试剂和前处理方法(超声和微波辅助)。优化后,无机砷的分离时间缩短至7 min,As(Ⅲ)和As(Ⅴ)的检出限分别为1.8 ng/g和4.6 ng/g。砷形态的高效提取剂为1.0 mol/L磷酸和0.1 mol/L抗坏血酸的混合溶液。微波辅助(2000 W、80 ℃、40 min)和超声辅助(40 kHz、20 ℃、40 min)分别是煤/粉煤灰和石膏样品中砷形态的最佳提取方法。在微波和超声波辅助提取条件下,As(Ⅲ)/As(Ⅴ)的回收率分别为95.8%/104.5%和90.6%/89.7%。样品分析结果表明,煤中砷主要以As(Ⅴ)形式存在,As(Ⅲ)所占比例很小,而在粉煤灰和石膏中只观察到As(Ⅴ)。该研究揭示了As(Ⅲ)向As(Ⅴ)的转化是气态砷捕获的关键,可以为控制电厂砷排放提供科学依据。
  • Figure  1  Chromatogram of As species after mobile phase flow rate optimization

    Figure  2  Chromatogram of As species after mobile phase concentration optimization

    Figure  3  (a) As concentrations extracted by different reagents and (b) the effect of H3PO4 concentrations on the As extracting

    Figure  4  Extraction efficiencies and species distributions of As in six coal samples

    Figure  5  Extraction efficiencies and species distributions of As in six FA samples

    Figure  6  Extraction efficiencies and species distributions of As in six gypsum samples

    Table  1  HPLC-HG-AFS instrument conditions for As species determination

    InstrumentParameter
    HPLCanalytical columnHamilton PRP-X100 (250 mm×4.1 mm, 10 μm)
    guard columnHamilton PRP-X100 (25 mm×2.3 mm, 12-20 μm)
    mobile phase30 mmol/L (NH4)2HPO4 (pH value 6.0)
    mobile phase flow rate1.3 mL/min
    AFScarrier liquid5% HCl
    carrier liquid flow rate65 r/min
    reducing agent0.5% KOH+ 2% KBH4
    carrier gas flow rate400 mL/min
    shielding gas flow500 mL/min
    lamp currentmain cathode 60 mA auxiliary cathode 30 mA
    lamp voltage270 mV
    下载: 导出CSV

    Table  2  As extraction efficiency of different methods (n=5)

    MethodExtraction efficiency
    coalfly ashgypsum
    Microwavea(74.8±9.1)%(92.3±7.5)%(36.2±5.9)%
    Ultrasoundb(63.7±8.6)%(53.1±7.4)%(57.6±6.0)%
    Shakingc(72.7±8.2)%(40.3±6.1)%(42.3±7.2)%
    a: 80 ℃, 2000 W for 40 min; b: 20 ℃, 40 kHz for 40 min; c: shaking at 20 ℃ for 18 h
    下载: 导出CSV

    Table  3  Recovery of As speciation after the microwave and ultrasound extraction (n=3)

    MicrowaveUltrasound
    As(Ⅲ)As(Ⅴ)As(Ⅲ)As(Ⅴ)
    Average recovery95.8%104.5%90.6%89.7%
    下载: 导出CSV

    Table  4  Linearities, LOD and LOQ of the proposed method

    SpeciationLinear ranges /(μg·L-1)Regressive equationsLinearitiesLOD /(ng·g-1)LOQ /(ng·g-1)
    As(Ⅲ)10-200y=954.21x-432.690.99951.86.3
    As(Ⅴ)10-200y=434.55x-2683.740.99794.614.7
    下载: 导出CSV

    Table  5  The total As concentrations in coal, FA, and gypsum samples

    SampleConcentration w/(μg·g-1)
    coalFAgypsum
    19.1722.473.92
    25.2326.774.57
    39.0241.354.28
    46.2716.214.15
    57.4614.514.39
    68.7542.183.92
    下载: 导出CSV
  • [1] ZHAO Y C, YANG J P, MA S M, ZHANG S B, LIU H, GONG B G, ZHANG J Y, ZHENG C G. Emission controls of mercury and other trace elements during coal combustion in China: A review[J]. Int Geol Rev, 2018, 60: 638-670. doi: 10.1080/00206814.2017.1362671
    [2] LUO G Q, YU Q, MA J, J, ZHANG B, XIAO L, LUO J, ZHOU T, WANG Y, XU M H, YAO H. Pilot-scale study of volatilization behavior of Hg, Se, As, Cl, S during decoupled conversion of coal[J]. Fuel, 2013, 112: 704-709. http://www.sciencedirect.com/science/article/pii/S0016236113004419
    [3] HE K Q, YUAN C G, SHI M D, JIANG Y H. Accelerated screening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance[J]. Ecotox Environ Safe, 2020, 187: 109820. https://www.sciencedirect.com/science/article/pii/S0147651319311510
    [4] XU H, ZHANG C, YUAN C L, YU S H, LI Q, FANG Q Y, CHEN G. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. J Fuel Chem Technol, 2019, 47(7): 876-883. https://www.sciencedirect.com/science/article/pii/S1385894716314085
    [5] QIN Y Q, CHEN X L, CHEN H D, LIU H F. Effects of adding CaO on the release and transformation of arsenic and sulfur during coal pyrolysis[J]. J Fuel Chem Technol, 2017, 45(2): 147-156. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX201702003.htm
    [6] DONG J L, GENG X, GAO Z Y, LIU Y F. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018, 46: 1401-1408.
    [7] LIU H, ZHAO Y C, ZHOU Y M, CHANG L, ZHANG J Y. Removal of gaseous elemental mercury by modified diatomite[J]. Sci Total Environ, 2018, 652: 651-659. http://www.ncbi.nlm.nih.gov/pubmed/30380473
    [8] XIE J J, YUAN C G, XIE J, SHEN Y W, HE K Q, ZHANG K G. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China[J]. Environ Pollut, 2019, 252: 336-343. http://www.sciencedirect.com/science/article/pii/S0269749118353363
    [9] REID M S, HOY K S, SCHOFIELD J R M, UPPAL J S, LE X C. Arsenic speciation analysis: A review with an emphasis on chromatographic separations[J]. Trac-Trend Anal Chem, 2019, 123: 115770. http://www.sciencedirect.com/science/article/pii/S0165993619304029
    [10] MAHER W, FOSTER S, KRIKOWA F, DONNER E, LOMBI E. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: Verification using XANES[J]. Environ Sci Technol, 2013, 47: 5821-5827. http://europepmc.org/abstract/med/23621828
    [11] TORRES AIGDL, GIRALDEZ I, MARTINEZ F, PALENCIA P, CORNS W T, SANCHEZRODAS D. Arsenic accumulation and speciation in strawberry plants exposed to inorganic arsenic enriched irrigation[J]. Food Chem, 2020, 315: 126215. https://www.sciencedirect.com/science/article/pii/S0308814620300625
    [12] MENON M, SARKAR B, HUFTON J, REYNOLDS C, YOUNG S. Do arsenic levels in rice pose a health risk to the UK population[J]. Ecotox Environ Safe, 2020, 197: 110601. https://pubmed.ncbi.nlm.nih.gov/32302858/
    [13] NARUKAWA T, TAKATSU A, CHIBA K, RILEY KW, FRENCH D. Investigation on chemical species of arsenic, selenium and antimony in fly ash from coal fuel thermal power stations[J]. J Environ Monitor, 2005, 7: 1342-1348. https://pubs.rsc.org/en/content/articlelanding/2005/em/b509817c
    [14] SUN M, LIU G J, WU Q H, LIU W Q. Speciation analysis of inorganic arsenic in coal samples by microwave-assisted extraction and high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry[J]. Talanta, 2013, 106: 8-13. http://europepmc.org/abstract/MED/23598089
    [15] XU Z, HU H Y, CHEN D K, CAO J X, YAO H. Determination of inorganic arsenic speciation in municipal solid waste incineration fly ash by high performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy with phosphoric acid as extracting agent[J]. Chin J Anal Chem, 2015, 43: 490-494.
    [16] ZOU H M, ZHOU C, LI Y X, YANG X S, WEN J, SONG S J, LI C X, SUN C J. Speciation analysis of arsenic in edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry[J]. Food Chem, 2020, 127033.
    [17] HE K Q, YUAN C G, SHI M D, JIANG Y H, YU S J. Fractions of arsenic and selenium in fly ash by ultrasound-assisted sequential extraction[J]. Rsc Adv, 2020, 10: 9226-9233. http://pubs.rsc.org/en/content/articlelanding/2020/ra/c9ra08481a
    [18] MONTPERRUS M, BOHARI Y, BUENO M, ASTRUC A, ASTRUC M. Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high-performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy[J]. Appl Organomet Chem, 2010, 16: 347-354. doi: 10.1002/aoc.311
    [19] LEERMAKERS M, BAEYENS W, DE GIETER M, SMEDTS B, MEERT C, DE BISSCHOP H C, MORABITO R, QUEVAUVILLER P. Toxic arsenic compounds in environmental samples: Speciation and validation[J]. Trac-Trend Anal Chem, 2006, 25(1): 1-10. https://www.sciencedirect.com/science/article/pii/S0165993605001706
    [20] GARCIAMANYES S, JIMENEZ G, PADRO A, RUBIO R, RAURET G. Arsenic speciation in contaminated soils[J]. Talanta, 2002, 58: 97-109. https://www.sciencedirect.com/science/article/pii/S003991400200259X
    [21] GAO X B, WANG Y X, HU Q H. Fractionation and speciation of arsenic in fresh and combusted coal wastes from Yangquan, northern China[J]. Environ Geochem Hltha, 2012, 34: 113-122. doi: 10.1007/s10653-011-9395-1
    [22] LIU Z X, HAO Y, ZHANG J, WU S M, PAN Y, ZHOU J Z, QIAN G R. The characteristics of arsenic in Chinese coal-fired power plant flue gas desulphurisation gypsum[J]. Fuel, 2020, 271: 117515. https://www.sciencedirect.com/science/article/pii/S001623612030510X
    [23] LI J Y, WANG J M. Integrated life cycle assessment of improving saline-sodic soil with flue gas desulfurization gypsum[J]. J Clean Prod, 2018, 202: 332-341. https://www.sciencedirect.com/science/article/pii/S0959652618323989
    [24] HUANG Y D, YANG Y H, HU H Y, XU M, LIU H, LI X, WANG X Y, YAO H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Process Combust Inst, 2019, 37: 2951-2957.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  45
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-09-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回