留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇水蒸气重整制氢CuAl2O4催化材料的研究

乔韦军 张楷文 张娜 张磊 庆绍军 高志贤

乔韦军, 张楷文, 张娜, 张磊, 庆绍军, 高志贤. 甲醇水蒸气重整制氢CuAl2O4催化材料的研究[J]. 燃料化学学报(中英文), 2020, 48(8): 980-985.
引用本文: 乔韦军, 张楷文, 张娜, 张磊, 庆绍军, 高志贤. 甲醇水蒸气重整制氢CuAl2O4催化材料的研究[J]. 燃料化学学报(中英文), 2020, 48(8): 980-985.
QIAO Wei-jun, ZHANG Kai-wen, ZHANG Na, ZHANG Lei, QING Shao-jun, GAO Zhi-xian. Study on CuAl2O4 catalytic material for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 980-985.
Citation: QIAO Wei-jun, ZHANG Kai-wen, ZHANG Na, ZHANG Lei, QING Shao-jun, GAO Zhi-xian. Study on CuAl2O4 catalytic material for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 980-985.

甲醇水蒸气重整制氢CuAl2O4催化材料的研究

基金项目: 

国家自然科学基金 21376237

辽宁省教育厅科学研究经费项目 L2019038

辽宁省自然科学基金面上项目 2019-MS-221

详细信息
  • 中图分类号: O643

Study on CuAl2O4 catalytic material for methanol steam reforming

Funds: 

the National Natural Science Foundation of China 21376237

Scientific Research Funds project of Liaoning Education Department L2019038

the Natural Science Fund in Liaoning Province 2019-MS-221

More Information
  • 摘要:γ-Al2O3为原料采用原位合成法制备CuAl2O4催化材料,通过XRF、XRD、BET和H2-TPR等手段对催化材料进行表征,考察铜铝物质的量比对CuAl2O4催化材料结构、性质及其催化甲醇水蒸气重整制氢性能的影响。结果表明,不同铜铝物质的量比主要影响了铜物种的还原性能,从而影响了其催化甲醇水蒸气重整制氢的性能。当铜铝物质的量比为1:2时,CuAl2O4催化材料的催化性能较好,在反应温度为260℃,水醇物质的量比为1.2,甲醇气体空速为800 h-1时,甲醇转化率为100%,产氢速率为895 mL/(kg·s)。
  • 图  1  CuAl2O4-t催化材料的XRD谱图

    Figure  1  XRD spectra of CuAl2O4-t catalytic materials

    a: CuAl2O4-1; b: CuAl2O4-2; c: CuAl2O4-4; d: CuAl2O4-16; e: γ-Al2O3

    图  3  CuAl2O4-t催化材料的氢气程序升温还原谱图

    Figure  3  H2-TPR spectra of CuAl2O4-t catalytic materials

    a: CuAl2O4-1; b: CuAl2O4-2; c: CuAl2O4-4; d: CuAl2O4-16

    图  2  CuAl2O4-t催化材料的N2吸附-脱附等温线

    Figure  2  N2 adsorption-desorption isotherms of CuAl2O4-t catalytic materials

    a: CuAl2O4-1; b: CuAl2O4-2; c: CuAl2O4-4; d: CuAl2O4-16; e: γ-Al2O3

    图  4  CuAl2O4-t催化材料催化活性曲线

    Figure  4  Catalytic activity curve of CuAl2O4-t catalytic materials (reaction conditions: atmospheric, GHSV=800 h-1, W/M=1.2 :1, no carrier gas)

    a: CuAl2O4-1; b: CuAl2O4-2; c: CuAl2O4-4; d: CuAl2O4-16; e: equil

    图  5  反应温度对催化剂CO摩尔含量的影响

    Figure  5  Effect of reaction temperature on catalyst CO content

    (reaction conditions: atmospheric, GHSV=800 h-1, W/M=1.2 :1, no carrier gas)

    表  1  CuAl2O4-t催化材料的元素含量

    Table  1  Elemental content of CuAl2O4-t catalytic materials

    Catalyst Content of element w/% Al /Cu
    (mol ratio)
    Cua Cub Ala Alb Oa Ob
    CuAl2O4-1 45.9 48.9 21.6 20.6 32.5 30.5 0.99
    CuAl2O4-2 34.7 35.1 28.3 29.7 37.0 35.2 1.99
    CuAl2O4-4 21.7 22.5 38.6 38.0 39.7 39.5 3.97
    CuAl2O4-16 6.7 7.1 48.5 48.2 44.8 44.7 15.97
    a: theoretical content;b: actual content
    下载: 导出CSV

    表  2  CuAl2O4-t催化材料和γ-Al2O3的比表面积及孔结构参数

    Table  2  Specific surface area and pore structure parameters of CuAl2O4-t catalytic materials and γ -Al2O3

    Catalyst ABET /(m2·g-1) Bore diameter d/nm
    CuAl2O4-1 18.6 3.42
    CuAl2O4-2 26.2 3.04
    CuAl2O4-4 57.6 18.14
    CuAl2O4-16 89.9 18.15
    γ-Al2O3 145.6 17.89
    下载: 导出CSV

    表  3  CuAl2O4-t催化材料还原峰面积及峰面积占比

    Table  3  Reduction peak area and area content of CuAl2O4-t catalytic materials

    Catalyst Peak area A/(a.u.) Area /%
    peak α peak β peak γ peak α peak β peak γ
    CuAl2O4-1 43242 18474 4562 65 28 7
    CuAl2O4-2 6430 25594 1737 19 76 5
    CuAl2O4-4 6170 9583 3125 33 51 16
    CuAl2O4-16 3934 1209 325 72 22 6
    下载: 导出CSV

    表  4  催化材料的产氢速率对比

    Table  4  Hydrogen production rate compare of catalytic materials

    Catalyst Reaction temperature t/℃ Water/methanol wmol/% GHSV /h-1 H2 production rateb w/(mL·kg-1·s-1)
    CuAl2O4-1 260 1.2:1 800 633
    CuAl2O4-2 260 1.2:1 800 895
    CuAl2O4-4 260 1.2:1 800 820
    CuO/CeO2-R[18] 240 1.2:1 800 378
    CuO/CeO2[20] 280 1.2:1 800 380
    CuZnCeZr[21] 240 1.2:1 1200 510
    Zn0.5Ce1Zr9Ox[22] 450 1.4:1 1500 808
    GHSV: methanol gas hourly space velocity
    下载: 导出CSV
  • [1] LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648):80-83. doi: 10.1038/nature21672
    [2] CLAUDE L. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell:Some considerations on the energy efficiencies[J]. Int J Hydrogen Energy, 2016, 41(34):15415-15425. doi: 10.1016/j.ijhydene.2016.04.173
    [3] HOSSAIN M A, JEWARATNAM J, GANESAN P. Prospect of hydrogen production from oil palm biomass by thermochemical process-A review[J]. Int J Hydrogen Energy, 2016, 41(38):16637-16655. doi: 10.1016/j.ijhydene.2016.07.104
    [4] SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010, 99(1/2):43-57. http://cn.bing.com/academic/profile?id=0f5dff1a475a8a50a266f4a590f5c457&encoded=0&v=paper_preview&mkt=zh-cn
    [5] LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEV A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094
    [6] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [7] CHOI H J, KANG M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded[J]. Int J Hydrogen Energy, 2007, 32(16):3841-3848. doi: 10.1016/j.ijhydene.2007.05.011
    [8] SANCHES S G, FLORES J H, DA SILVA M I P. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming[J]. Mol Catal, 2018, 454:55-62. doi: 10.1016/j.mcat.2018.05.012
    [9] DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015, 40(33):10463-10479. doi: 10.1016/j.ijhydene.2015.06.130
    [10] XU T K, ZOU J, TAO W T, ZHANG S Y, CUI L, ZENG F L, WANG D Z, CAI W J. I Co-nanocasting synthesis of Cu based composite oxide and its promoted catalytic activity for methanol steam reforming[J]. Fuel, 2018, 183:238-244. http://cn.bing.com/academic/profile?id=e99eb6438e874b0cb0cc166cb92b4a62&encoded=0&v=paper_preview&mkt=zh-cn
    [11] HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol[J]. J Power Sources, 2015, 281:138-145. doi: 10.1016/j.jpowsour.2015.01.168
    [12] 覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤.甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J].燃料化学学报, 2017, 45(12):84-91. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201712011.htm

    QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Study on Cu-Al spinel slow-release catalyst for methanol-to-hydrogen production the effect of different copper sources[J]. J Fuel Chem Technol, 2017, 45(12):84-91. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201712011.htm
    [13] 郗宏娟, 李光俊, 庆绍军, 侯晓宁, 赵金珍, 刘雅杰, 高志贤.固相法合成铜铝尖晶石催化甲醇重整反应[J].燃料化学学报, 2013, 41(8):998-1002. http://www.ccspublishing.org.cn/article/id/100032964

    XI Hong-juan, LI Guang-jun, QING Shao-jun, HOU Xiao-ning, ZHAO Jin-zhen, LIU Ya-jie, GAO Zhi-xian. Solid-state synthesis of copper-aluminum spinel catalyzed methanol reforming reaction[J]. J Fuel Chem Technol, 2013, 41(8):998-1002. http://www.ccspublishing.org.cn/article/id/100032964
    [14] 李光俊, 郗宏娟, 张素红, 谷传涛, 庆绍军, 侯晓宁, 高志贤.尖晶石CuM2O4(M=Al、Fe、Cr)催化甲醇重整反应的特性[J].燃料化学学报, 2012, 40(12):60-65. http://www.ccspublishing.org.cn/article/id/100032833

    LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Characteristics of spinel CuM2O4 (M=Al, Fe, Cr) catalyzed methanol reforming reaction[J]. J Fuel Chem Technol, 2012, 40(12):60-65. http://www.ccspublishing.org.cn/article/id/100032833
    [15] YAHIRO H, NAKAYA K, YAMAMOTO T, SAIKI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006, 7(4):228-231. doi: 10.1016/j.catcom.2005.11.004
    [16] XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Edit, 2014, 126:12080-12083. doi: 10.1002/ange.201405213
    [17] 苏石龙, 张磊, 张艳, 雷俊腾, 桂建舟, 刘丹, 刘道胜, 潘立卫.千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J].石油化工高等学校学报, 2015, 28(2):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx201502004

    SU Shi-long, ZHANG Lie, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dao-sheng, PAN Li-wei. Thermodynamic simulation of hydrogen production process from kilowatt PEMFC methanol steam reforming[J]. J Petro Univ, 2015, 28(2):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx201502004
    [18] YANG S Q, ZHOU F, LIU Y J, ZHANG L, YU C, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
    [19] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. http://www.ccspublishing.org.cn/article/id/00984ce6-5d53-4ea0-929f-0c4b80514203

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lie, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. http://www.ccspublishing.org.cn/article/id/00984ce6-5d53-4ea0-929f-0c4b80514203
    [20] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8):992-999. http://www.ccspublishing.org.cn/article/id/a6e5d5bf-0e5d-4327-b0f9-f6cde8e4ef32

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lie, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of carrier roasting atmosphere on CuO/CeO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. http://www.ccspublishing.org.cn/article/id/a6e5d5bf-0e5d-4327-b0f9-f6cde8e4ef32
    [21] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [22] SONG Q L, MEN Y, WANG J G, LIU S, CHAI S S, AN W, WANG K, LI Y Y, TANG Y H. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts[J]. Int J Hydrogen Energy, 2020, 45(16):9592-9602. doi: 10.1016/j.ijhydene.2020.01.175
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  86
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2020-07-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回