留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈含量对CeUSY分子筛抗镍性能的影响及机理研究

孙兆林 惠宇 杨野 秦玉才 张莉 张乐 贾未鸣 祖运 宋丽娟

孙兆林, 惠宇, 杨野, 秦玉才, 张莉, 张乐, 贾未鸣, 祖运, 宋丽娟. 铈含量对CeUSY分子筛抗镍性能的影响及机理研究[J]. 燃料化学学报(中英文), 2018, 46(7): 856-863.
引用本文: 孙兆林, 惠宇, 杨野, 秦玉才, 张莉, 张乐, 贾未鸣, 祖运, 宋丽娟. 铈含量对CeUSY分子筛抗镍性能的影响及机理研究[J]. 燃料化学学报(中英文), 2018, 46(7): 856-863.
SUN Zhao-lin, HUI Yu, YANG Ye, QIN Yu-cai, ZHANG Li, ZHANG Le, JIA Wei-ming, ZU Yun, SONG Li-juan. Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 856-863.
Citation: SUN Zhao-lin, HUI Yu, YANG Ye, QIN Yu-cai, ZHANG Li, ZHANG Le, JIA Wei-ming, ZU Yun, SONG Li-juan. Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 856-863.

铈含量对CeUSY分子筛抗镍性能的影响及机理研究

基金项目: 

国家自然科学基金 U1662135

国家自然科学基金 21376114

详细信息
  • 中图分类号: O643

Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite

Funds: 

the National Natural Science Foundation of China U1662135

the National Natural Science Foundation of China 21376114

More Information
    Corresponding author: SONG Li-juan, Tel/Fax:+86-024-56860658, E-mail:lsong56@263.net
  • 摘要: 采用液相离子交换法制备了不同Ce含量的CeUSY分子筛,并通过Mitchell等体积浸渍法对其进行Ni污染,运用ICP-AES、XRD和N2吸附等温线等方法对其织构性质进行表征,并利用微反应活性评价装置考察了其抗镍性能。结果表明,不同Ce含量改性的USY样品其抗镍效果存在差异,CeUSY分子筛的抗镍效果与Ce含量的关系呈现火山型变化。结合Ni污染前后CeUSY分子筛的H2-TPR和Py-FTIR表征结果探讨了Ce物种的抗镍机制,证实了Ce物种形态的变化是不同Ce含量的CeUSY分子筛具有不同抗镍效果的重要成因,其中,SOD笼中的Ce(OH)2+在高温条件下可与Ni(OH)+相互作用,脱去一分子H2O形成Ce3+-O-Ni2+的稳定结构,阻碍了Ni物种与骨架铝的结合导致CeUSY分子筛中B酸中心的破坏,同时有效抑制了易还原NiO物种的生成。而Ce含量过高使得SOD笼内的Ce物种变成二聚以及三聚物,与Ni(OH)+作用减弱,使其抗镍性能减弱。
  • 图  1  不同Ce含量的CeUSY分子筛经Ni污染前(a)和污染后(b)的XRD谱图

    Figure  1  XRD patterns of CeUSY zeolites with different Ce contents before(a)/after(b) Ni contamination

    a: USY; b: CeUSY-1; c: CeUSY-2; d: CeUSY-3

    图  2  不同Ce含量USY分子筛经Ni污染后的SEM照片及EDS谱图

    Figure  2  SEM (a) and EDS (b) spectra of CeUSY zeolites with different Ce contents after Ni contamination

    (a): Ni/USY; (b): Ni/CeUSY-1; (c): Ni/CeUSY-2; (d): Ni/CeUSY-3 red and blue points denote the Ni and Ce element in EDS maps, respectively

    图  3  不同Ce含量的CeUSY分子筛经Ni污染前(a)和污染后(b)的H2-TPR谱图

    Figure  3  H2-TPR spectra of CeUSY zeolites with different Ce contents before (a)/after (b) Ni contamination

    a: USY; b: CeUSY-1; c: CeUSY-2; d: CeUSY-3

    图  4  Ni/CeUSY分子筛中Ce物种与Ni物种的作用机理

    Figure  4  Interaction mechanism of Ce species and Ni species in Ni/CeUSY zeolites

    图  5  不同Ce含量的CeUSY分子筛经Ni污染前后的微反应活性指数

    Figure  5  MAT index of CeUSY zeolites with different Ce contents before and after Ni contamination

    表  1  不同Ce含量的CeUSY分子筛经Ni污染前后的物理性质

    Table  1  Physical properties of CeUSY zeolites with different Ce contents before/after Ni contamination

    Sample USY Ni/USY CeUSY-1 Ni/CeUSY-1 CeUSY-2 Ni/CeUSY-2 CeUSY-3 Ni/CeUSY-3
    n(SiO2)/n(Al2O3) 7.1 6.9 7.5 7.3 7.9 7.8 7.4 7.2
    Ni content w/% - 0.29 - 0.28 - 0.30 - 0.29
    Ce2O3 content w/% - - 3.16 3.16 5.68 5.68 6.14 6.14
    下载: 导出CSV

    表  2  不同Ce含量的CeUSY分子筛经Ni污染前后的孔结构性质

    Table  2  Pore structural properties of CeUSY zeolites with different Ce contents before/after Ni contamination

    Sample USY Ni/USY CeUSY-1 Ni/CeUSY-1 CeUSY-2 Ni/CeUSY-2 CeUSY-3 Ni/CeUSY-3
    ABET/(m2·g-1) 608 590 571 580 596 574 582 588
    Amic/(m2·g-1) 545 518 515 494 528 511 521 515
    vtotal/(cm3·g-1) 0.375 0.374 0.363 0.385 0.381 0.369 0.374 0.376
    vmic/(cm3·g-1) 0.286 0.272 0.268 0.258 0.275 0.268 0.273 0.271
    ABET: surface area determined by the BET method; Amic: surface area determined by t-plot method; vtotal: total pore volume;
    vmic: micropore pore volume determined by the HK method
    下载: 导出CSV

    表  3  以吡啶为探针分子测定不同Ce含量的CeUSY分子筛经Ni污染前后的酸性质

    Table  3  Acidic properties of CeUSY zeolites with different Ce contents before/after Ni contamination with pyridine as probe molecules

    Sample USY Ni/USY CeUSY-1 Ni/CeUSY-1 CeUSY-2 Ni/CeUSY-2 CeUSY-3 Ni/CeUSY-3
    TB/(μmol·g-1) 170 133 135 109 136 120 128 118
    TL/(μmol·g-1) 60 93 84 75 72 75 58 68
    SB/(μmol·g-1) 166 129 115 95 115 104 98 82
    SL/(μmol·g-1) 42 43 31 25 28 35 22 30
    WB/(μmol·g-1) 4 4 20 14 21 16 30 36
    WL/(μmol·g-1) 39 50 53 50 44 40 36 38
    TB: total Brønsted acid sites; TL: total Lewis acid sites; SB: strong Brønsted acid sites; SL: strong Lewis acid sites; WB: weak Brønsted acid sites; WL: weak Lewis acid sites
    下载: 导出CSV
  • [1] VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking:Recent developments on the grand old lady of zeolite catalysis[J]. Chem Soc Rev, 2015, 44(20):7342-7370. doi: 10.1039/C5CS00376H
    [2] AKAH A. Application of rare earths in fluid catalytic cracking:A review[J]. J Rare Earths, 2017, 35(10):941-956. doi: 10.1016/S1002-0721(17)60998-0
    [3] SUZUKI M, TSUTSUMI K, TAKAHASHI H, SAITO Y. Tpr study on reducibility of nickel ions in zeolite Y[J]. Zeolites, 1989, 9(2):98-103. doi: 10.1016/0144-2449(89)90056-0
    [4] 刘晓东. 钝化组元迁移性和新型固体钝化剂的研究[D]. 北京: 石油化工科学研究院, 2001. http://cdmd.cnki.com.cn/Article/CDMD-86301-2002051237.htm

    LIU Xiao-dong. Study on the migration of passive components and the study of new solid passivation agent[D]. Beijing: Petrochemical Engineering Research Institute, 2001. http://cdmd.cnki.com.cn/Article/CDMD-86301-2002051237.htm
    [5] SEO S M, PARK M, CHUNG D Y, LIM W T. Preparation of excessively Ni2+-exchanged zeolite Y (FAU, Si/Al=1.70) and its single-crystal structure[J]. J Porous Mater, 2014, 21(5):521-530. doi: 10.1007/s10934-014-9799-2
    [6] LUENGNARUEMITCHAI A, KAENGSILALAI A. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide[J]. Chem Eng J, 2008, 144(1):96-102. doi: 10.1016/j.cej.2008.05.023
    [7] YANG S J, CHEN Y W, LI C. Vanadium-nickel interaction in REY zeolite[J]. Appl Catal A:Gen, 1994, 117:109-123. doi: 10.1016/0926-860X(94)85092-5
    [8] POMPEA R, JÄRÓASB S, VANNERBERGB N G. On the interaction of vanadium and nickel compounds with cracking catalyst[J]. Appl Catal, 1984, 13:171-179. doi: 10.1016/S0166-9834(00)83335-7
    [9] GUISNET M, MAGNOUX P. Coking and deactivation of zeolites:Influence of the pore structure[J]. Appl Catals, 1989, 54(1):1-27. doi: 10.1016/S0166-9834(00)82350-7
    [10] ESCOBAR A S, PINTO F V, CERQUEIRA H S, PEREIRA M M. Role of nickel and vanadium over USY and RE-USY coke formation[J]. Appl Catal A:Gen, 2006, 315:68-73. doi: 10.1016/j.apcata.2006.09.004
    [11] SOUSA-AGUIAR E F, TRIGUEIRO F E, ZOTIN F M Z. The role of rare earth elements in zeolites and cracking catalysts[J]. Catal Today, 2013, 218:115-122. http://www.sciencedirect.com/science/article/pii/S0920586113003192
    [12] WALLENSTEIN D, SCHÄFER K, HARDING R H. Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters[J]. Appl Catal A:Gen, 2015, 502:27-41. doi: 10.1016/j.apcata.2015.05.010
    [13] 魏晓丽, 毛安国, 宋宝梅.镍污染方式对催化剂裂化性能的影响[J].石油炼制与化工, 2008, 39(6), 6-10. http://www.cqvip.com/QK/95141A/200806/27516662.html

    WEI Xiao-Li, MAO An-guo, SONG Bao-mei. Effect of the ways of nickel contamination on the catalytic cracking performance of FCC catalyst[J]. Pet Process Petrochem, 2008, 39(6):6-10. http://www.cqvip.com/QK/95141A/200806/27516662.html
    [14] LI D, LI F, REN J, SUN Y H. Rare earth-modified bifunctional Ni/HY catalysts[J]. Appl Catal A:Gen, 2003, 241(1):15-24. http://www.sciencedirect.com/science/article/pii/S0926860X02004544
    [15] WESTERMANNA A, AZAMBREB B, BACARIZAA M C, GRAÇAA I, RIBEIROA M F, LOPESA J M, HENRIQUESA C. The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite:A FT-IR In Situ/Operando study[J]. Catal Today, 2017, 283:74-81. doi: 10.1016/j.cattod.2016.02.031
    [16] 刘璞生, 张忠东, 高雄厚.稀土含量对Y型分子筛催化性能的影响[J].石油学报(石油加工), 2010, S1:107-111. http://www.cqvip.com/QK/94167X/2010S1/1003552781.html

    LIU Pu-sheng, ZHANG Zhong-dong, GAO Xiong-hou. Effects of rare earth concent on catalytic properties of Y zeolite[J]. Acta Pet Sin (Pet Process Sect), 2010, S1:107-111 http://www.cqvip.com/QK/94167X/2010S1/1003552781.html
    [17] GAO X, QIN Z, WANG B, ZHAO X, LI J, ZHAO H, LIU H, SHEN B. High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion[J]. Appl Catal A:Gen, 2012, 413:254-260. http://www.sciencedirect.com/science/article/pii/S0926860X11006764
    [18] 张畅, 秦玉才, 高雄厚, 张海涛, 莫周胜, 初春雨, 张晓彤, 宋丽娟. Ce改性对Y型分子筛酸性及其催化转化性能的调变机制[J].物理化学学报, 2015, 31(2):344-352. doi: 10.3866/PKU.WHXB201412163

    ZHANG Chang, QIN Yu-cai, GAO Xiong-hou, ZHANG Hai-tao, MO Zhou-sheng, CHU Chun-yu, ZHANG Xiao-tong, SONG Li-juan. Modulation of the acidity and catalytic conversion properties of y zeolites modified by cerium cations[J]. Acta Phys-Chim Sin, 2015, 31(2):344-352. doi: 10.3866/PKU.WHXB201412163
    [19] ZU Y, QIN Y, GAO X, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017, 203:96-107. doi: 10.1016/j.apcatb.2016.10.008
    [20] ZHANG L, QIN Y, JI D, CHU G, GAO X, ZHANG X T, SONG L J. Effect of cerium ions initial distribution on the crystalline structure and catalytic performance of CeY zeolite[J]. J Rare Earths, 2017, 35(8):791-799. doi: 10.1016/S1002-0721(17)60978-5
    [21] 于善青, 田辉平, 朱玉霞, 代振宇, 龙军.稀土离子调变Y型分子筛结构稳定性和酸性的机制[J].物理化学学报, 2011, 27(11):2528-2534. doi: 10.3866/PKU.WHXB20111101

    YU Shan-qing, TIAN Hui-ping, ZHU Yu-xia, DAI Zhen-yu, LONG Jun. Mechanism of rare earth cations on the stability and acidity of Y zeolites[J]. Acta Phys-Chim Sin, 2011, 27(11):2528-2534. doi: 10.3866/PKU.WHXB20111101
    [22] LI J, ZENG P, ZHAO L, REN S, GUO Q, ZHAO H, WANG B, LIU H, PANG X, GAO X, SHEN B. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J]. J Catal, 2015, 329:441-448. doi: 10.1016/j.jcat.2015.06.012
    [23] DU X, ZHANG H, LI X, TAN Z, LIU H, GAO X. Cation location and migration in lanthanum-exchanged NaY zeolite[J]. Chin J Catal, 2013, 34(8):1599-1607. doi: 10.1016/S1872-2067(11)60622-6
    [24] DU X, GAO X, ZHANG H, LI X, LIU P. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013, 35:17-22. doi: 10.1016/j.catcom.2013.02.010
    [25] DENG C, ZHANG J, DONG L, HUANG M, LI B, JIN G, GAO J, ZHANG F, FAN M, ZHANG L, GONG Y. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite[J]. Sci Rep-UK, 2016, 6:23382. doi: 10.1038/srep23382
    [26] SCHUÜβLER F, PIDKO E A, KOLVENBACH R, SIEVERS C, HENSEN E J, VAN SANTEN R A, LERCHER J A. Nature and location of cationic lanthanum species in high alumina containing faujasite type zeolites[J]. J Phys Chem C, 2011, 115(44):21763-21776. doi: 10.1021/jp205771e
    [27] MITCHELL B R. Metal contamination of cracking catalysts. 1. Synthetic metals deposition on Fresh catalysts[J]. Ind Eng Chem Prod Res Dev, 1980, 19:209-213 doi: 10.1021/i360074a015
    [28] 王林, 孙雪芹, 陈淑琨, 曹庚振, 瞿朝霞, 杨一青, 王宝杰.镍的沉积对催化剂活性及汽油性质的影响[J].应用化工, 2012, 41(11):1960-1962. http://www.oalib.com/paper/5123307

    WANG Lin, SUN Xue-qin, CHEN Shu-kun, CAO Geng-zhen, QU Zhao-xia, YANG Yi-qing, WANG Bao-jie. Influence of nickel depositon on catalytic cracking activity and gasoline properties[J]. Appl Chem Ind, 2012, 41(11):1960-1962. http://www.oalib.com/paper/5123307
    [29] ZHENG X, WU S, WANG S, WANG S. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation[J]. Appl Catal A:Gen, 2005, 283(1):217-223. http://www.sciencedirect.com/science/article/pii/S0926860X05000165
    [30] 刘会敏, 李宇明, 吴昊, 杨维维, 贺德华. Nd, Ce和La改性对Ni/SBA-15催化剂在CH4/CO2重整反应中性能的影响[J].催化学报, 2014, 35(9):1520-1528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201409017

    LIU Hui-Min, LI Yu-ming, WU Hao, YANG Wei-wei, HE De-hua. Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4[J]. Chin J Catal, 2014, 35(9):1520-1528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201409017
    [31] SONG H, WAN X, DAI M, ZHANG J, LI F, SONG H. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013, 116:52-62. doi: 10.1016/j.fuproc.2013.04.017
    [32] GRACA I, GONZÁLEZ L V, BACARIZA M C, FERNANDES A, HENRIQUES C, LOPES J M, RIBEIRO M F. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Appl Catal B:Environ, 2014, 147:101-110. doi: 10.1016/j.apcatb.2013.08.010
    [33] ZHANG S H, MURATSUGU S, ISHIGURO N, TADA M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catal, 2013, 3(8):1855-1864. doi: 10.1021/cs400159w
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-24
  • 修回日期:  2018-05-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回