留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸铵添加剂对生物质富氧混烧过程中氯与氮协同转化特性的影响

柳殿彬 李伟 李诗媛 孔润娟

柳殿彬, 李伟, 李诗媛, 孔润娟. 硫酸铵添加剂对生物质富氧混烧过程中氯与氮协同转化特性的影响[J]. 燃料化学学报(中英文), 2020, 48(1): 28-35.
引用本文: 柳殿彬, 李伟, 李诗媛, 孔润娟. 硫酸铵添加剂对生物质富氧混烧过程中氯与氮协同转化特性的影响[J]. 燃料化学学报(中英文), 2020, 48(1): 28-35.
LIU Dian-bin, LI Wei, LI Shi-yuan, KONG Run-juan. Influences of ammonium sulfate additive on Cl and N co-transformation during biomass/semi-coke oxy-fuel co-combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 28-35.
Citation: LIU Dian-bin, LI Wei, LI Shi-yuan, KONG Run-juan. Influences of ammonium sulfate additive on Cl and N co-transformation during biomass/semi-coke oxy-fuel co-combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 28-35.

硫酸铵添加剂对生物质富氧混烧过程中氯与氮协同转化特性的影响

基金项目: 

国家自然科学基金 51706227

详细信息
  • 中图分类号: TK6

Influences of ammonium sulfate additive on Cl and N co-transformation during biomass/semi-coke oxy-fuel co-combustion

Funds: 

the National Natural Science Foundation of China 51706227

More Information
  • 摘要: 在50 kW循环流化床燃烧实验台进行了O2/CO2气氛下硫酸铵添加剂对生物质和半焦混烧过程中K/S/Cl迁移和N2O/NO排放影响实验研究。结果表明,硫酸铵添加剂从提升管喷入后能够明显降低积灰中Cl含量,同时显著降低烟气中NO浓度。此外,硫酸铵添加剂还能够增强碱金属K向底渣和循环灰迁移转化,从而降低积灰中碱金属K含量。实验表明,硫酸铵添加剂的最佳喷入位置在提升管中上部。
  • 图  1  实验装置系统示意图

    Figure  1  Schematic diagram of the experimental system

    图  2  积灰探针结构示意图

    Figure  2  Schematic diagram of the deposition probe

    图  3  不同工况下沿提升管高度温度分布

    Figure  3  Temperature profiles along the riser

    图  4  硫酸铵添加剂对K迁移特性的影响

    Figure  4  Effect of ammonia sulfate additive on the K transformation characteristic

    图  5  硫酸铵添加剂对S迁移特性的影响

    Figure  5  Effect of ammonia sulfate additive on the S transformation characteristic

    图  6  硫酸铵添加剂对Cl迁移特性的影响

    Figure  6  Effect of ammonia sulfate additive on the Cl transformation characteristic

    图  7  未喷硫酸铵灰样品的XRD谱图

    Figure  7  XRD patterns of ash samples without ammonia sulfate additive

    1: SiO2; 2: CaCO3; 3: CaSO4; 4: CaO; 5: KCl

    图  8  喷入硫酸铵(AS/Cl=5)灰样品的XRD谱图

    Figure  8  XRD patterns of ash samples with ammonia sulfate additive (AS/Cl=5)

    1: SiO2; 2: CaCO3; 3: CaSO4

    图  9  硫酸铵添加剂对N2O和NO排放特性的影响

    Figure  9  Effect of ammonia sulfate additive on the N2O and NO emission characteristics

    图  10  硫酸铵添加剂喷入位置对K迁移特性的影响

    Figure  10  Effect of ammonia sulfate injection position on the K transformation characteristic

    图  11  硫酸铵添加剂喷入位置对S迁移特性的影响

    Figure  11  Effect of ammonia sulfate injection position on the S transformation characteristic

    图  12  硫酸铵添加剂喷入位置对Cl迁移特性的影响

    Figure  12  Effect of ammonia sulfate injection position on the Cl transformation characteristic

    图  13  硫酸铵添加剂喷入位置对N2O和NO排放规律的影响

    Figure  13  Effect of ammonia sulfate injection position on the N2O and NO emission characteristics

    表  1  实验燃料的工业分析与元素分析

    Table  1  Proximate and ultimate analyses of experimental fuels

    Fuel Proximate analysis wad/% Ultimate analysis wad/% Qar, net /(MJ·kg-1)
    M A V FC C H O N S Cl
    CS 6.66 14.92 62.60 15.82 39.29 4.65 33.43 0.91 0.14 0.58 14.51
    SC 5.75 12.28 12.10 69.87 73.18 1.29 6.45 0.73 0.32 - 25.34
    下载: 导出CSV

    表  2  燃料灰成分分析

    Table  2  Ash compositions of experimental fuels

    Fuel Content w/%
    SiO2 Al2O3 Fe2O3 CaO MgO TiO2 SO3 P2O5 K2O Na2O
    CS 54.40 7.46 3.01 7.47 5.40 0.50 2.10 1.52 11.47 1.89
    SC 16.84 7.36 11.46 49.60 1.64 0.44 8.18 0.08 0.23 0.64
    下载: 导出CSV
  • [1] 骆仲泱, 陈晨, 余春江.生物质直燃发电锅炉受热面沉积和高温腐蚀研究进展[J].燃烧科学与技术, 2014, 20(3):189-198. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201403001

    LUO Zhong-yang, CHEN Chen, YU Chun-jiang. Review of deposition and high-temperature corrosion in biomass-fired boilers[J]. J Combust Sci Technol, 2014, 20(3):189-198. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201403001
    [2] GOUGH C, UPHAM P. Biomass energy with carbon capture and storage (BECCS or Bio-CCS)[J]. Greenhouse Gases:Sci Technol, 2011, 1(4):324-334. doi: 10.1002/ghg.34
    [3] NIELSEN H P, FRANDSEN F J, DAM-JOHANSEN K, BAXTER L L. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Prog Energy Combust, 2000, 26(3):283-298. doi: 10.1016/S0360-1285(00)00003-4
    [4] YU C, QIN J, NIE H, FANG M, LUO Z. Experimental research on agglomeration in straw-fired fluidized beds[J]. Appl Energy, 2011, 88(12):4534-4543. doi: 10.1016/j.apenergy.2011.05.046
    [5] 别如山, 李炳熙, 陆慧林, 杨励丹.燃生物废料流化床锅炉[J].热能动力工程, 2000, 15(88):345-347. http://d.old.wanfangdata.com.cn/Periodical/rndlgc200004004

    BIE Ru-shan, LI Bing-xi, LU Hui-lin, YANG Li-dan. Biomass-fired fluidized bed boilers[J]. J Eng Therm Energy Power, 2000, 15(88):345-347. http://d.old.wanfangdata.com.cn/Periodical/rndlgc200004004
    [6] DAYTON D C, JENKINS B M, TURN S Q, BAKKER R R, WILLIAMS R B, BELLE-OUDRY D, HILL L M. Release of inorganic constituents from leached biomass during thermal conversion[J]. Energy Fuels, 1999, 13(4):860-870. doi: 10.1021/ef980256e
    [7] DAVIDSSON K O, KORSGREN J G, PETTERSSON J B C, JALID U. The effects of fuel washing techniques on alkali release from biomass[J]. Fuel, 2002, 81(2):137-142. doi: 10.1016/S0016-2361(01)00132-6
    [8] AHO M, VAINIKKA P, TAIPALE R, YRJAS P. Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters[J]. Fuel, 2008, 87(6):647-654. doi: 10.1016/j.fuel.2007.05.033
    [9] KASSMAN H, BAFVER L, ÅMAND L E. The importance of SO2 and SO3 for sulphation of gaseous KCl:An experimental investigation in a biomass fired CFB boiler[J]. Combust Flame, 2010, 157(9):1649-1657. doi: 10.1016/j.combustflame.2010.05.012
    [10] KASSMAN H, PETTERSSON J, STEENARI B M, AMAND L E. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion-injection of ammonium sulphate and co-combustion with peat[J]. Fuel Process Technol, 2013, 105:170-180. doi: 10.1016/j.fuproc.2011.06.025
    [11] KASSMAN H, BROSTROM M, BERG M, AMAND L E. Measures to reduce chlorine in deposits:Application in a large-scale circulating fluidized bed boiler firing biomass[J]. Fuel, 2011, 90(4):1325-1334. doi: 10.1016/j.fuel.2010.12.005
    [12] NORLING R, NAFARI A, NYLUND A. Erosion-corrosion of Fe-and Ni-based tubes and coatings in a fluidized bed test rig during exposure to HCl- and SO2-containing atmospheres[J]. Wear, 2005, 258(9):1379-1383. doi: 10.1016/j.wear.2004.05.028
    [13] MAYORAL M C, ANDRES J M, BELZUNCE J, HIGUERA V. Study of sulphidation and chlorination on oxidized SS310 and plasma-sprayed Ni-Cr coatings as simulation of hot corrosion in fouling and slagging in combustion[J]. Corros Sci, 2006, 48(6):1319-1336. doi: 10.1016/j.corsci.2005.06.004
    [14] PHONGPHIPHAT A, RYU C, YANG Y B, FINNEY K N, LEYLAND A, SHARIFI V N, SWITHENBANK J. Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant[J]. Corros Sci, 2010, 52(12):3861-3874. doi: 10.1016/j.corsci.2010.07.032
    [15] 黄芳.秸秆燃烧过程中受热面沉积腐蚀问题研究[D].杭州: 浙江大学, 2013.

    HUANG Fang. Study on the deposit and corrosion problem on heating surface during straw combustion[D]. Hangzhou: Zhejiang Univeristy, 2013.
    [16] 何小明, 赵兵涛.藻类生物质与煤混烧过程氮硫污染物的排放与转化特性[J].动力工程学报, 2019, 39(6):474-477. http://d.old.wanfangdata.com.cn/Periodical/dlgc201906007

    HE Xiao-ming, ZHAO Bin-tao. Emission and conversion characteristics of NO and SO2 from Co-firing of algae biomass and coal[J]. J Chin Soc Power Eng, 2019, 39(6):474-477. http://d.old.wanfangdata.com.cn/Periodical/dlgc201906007
    [17] JI X, BIE H, ZHANG Y, CHEN P, FANG W, BIE R. Release of K and Cl and emissions of NOx and SO2 during reed black liquor combustion in a fluidized bed[J]. Energy Fuels, 2017, 31(2):1631-1637. doi: 10.1021/acs.energyfuels.6b02701
    [18] 陈安合.煤与生物质混烧过程氯、碱金属和氮氧化物排放行为研究[D].北京: 中国科学院过程工程研究所, 2007.

    CHEN An-he. Investigation of chlorine, alkalis, NOx and N2O emissions during coal-biomass Co-firing[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2007.
    [19] 谢敬思, 程世庆, 张慧敏, 张海瑞, 刘坤. O2/CO2气氛下生物质与煤混燃的NO排放特性研究[J].热力发电, 2012, 41(8):38-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlfd201208009

    XIE Jing-si, CHENG Shi-qing, ZHANG Hui-min, ZHANG Hai-rui, LIU Kun. Experimental study on no emission characteristic:of-firing of biomass and coal in O2/CO2 atmosphere[J]. Therm Power Gener, 2012, 41(8):38-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlfd201208009
    [20] HANSEN L A, NIELSEN H P, FRANDSEN F J, DAM-JOHANSEN K, HORLYCK S, KARLSSON A. Influence of deposit formation on corrosion at a straw-fired boiler[J]. Fuel Process Technol, 2000, 64(1):189-209. doi: 10.1016-S0378-3820(00)00063-1/
    [21] DAVIDSSON K O, AMAND L E, STEENARI B M, ELLED A L, ESKILSSON D, LECHNER B. Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler[J]. Chem Eng Sci, 2008, 63(21):5314-5329. doi: 10.1016/j.ces.2008.07.012
    [22] BROSTROM M, KASSMAN H, HELGESSON A, BERG M, ANDERSSON C, BACKMAN R, NORDIN A. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler[J]. Fuel Process Technol, 2007, 88(11/12):1171-1177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7078671948d8d272e998f9c1f7ed964f
    [23] LIU D, LI W, LI S. Fundamental study of heterogeneous KCl sulfation under oxy-fuel combustion conditions[J]. Int J Energy Res, 2019, 43(9):4093-4103. doi: 10.1002/er.4501
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  42
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 修回日期:  2019-11-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回