留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水对采空区遗煤吸附电厂烟气影响的理论计算

金智新 武司苑 邓存宝 戴凤威 王雪峰

金智新, 武司苑, 邓存宝, 戴凤威, 王雪峰. 水对采空区遗煤吸附电厂烟气影响的理论计算[J]. 燃料化学学报(中英文), 2017, 45(9): 1035-1042.
引用本文: 金智新, 武司苑, 邓存宝, 戴凤威, 王雪峰. 水对采空区遗煤吸附电厂烟气影响的理论计算[J]. 燃料化学学报(中英文), 2017, 45(9): 1035-1042.
JIN Zhi-xin, WU Si-yuan, DENG Cun-bao, DAI Feng-wei, WANG Xue-feng. Theoretical calculation of water effect on power plant flue gas adsorption by goaf coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1035-1042.
Citation: JIN Zhi-xin, WU Si-yuan, DENG Cun-bao, DAI Feng-wei, WANG Xue-feng. Theoretical calculation of water effect on power plant flue gas adsorption by goaf coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1035-1042.

水对采空区遗煤吸附电厂烟气影响的理论计算

基金项目: 

国家自然科学基金 51174108

详细信息
  • 中图分类号: X773

Theoretical calculation of water effect on power plant flue gas adsorption by goaf coal

Funds: 

National Natural Science Foundation of China 51174108

More Information
  • 摘要: 为研究电厂烟气注入采空区时,煤中含水率和烟气中水分对于封存温室气体CO2和抑制煤自燃的影响,建立干煤和湿煤结构模型,采用巨正则系综蒙特卡洛方法,计算了不同水分含量的烟气组分CO2/O2/N2/H2O在干煤以及不同含水率的湿煤中的吸附行为。结果表明,烟气中CO2竞争性最强吸附量最大,O2的物理吸附量极小,烟气中H2O含量不影响CO2、N2和O2的吸附量,可不进行干燥处理直接将电厂烟气注入采空区。随着煤中含水率增加,水分占据孔隙空间,范德华作用减弱,H2O-H2O之间的氢键作用增强且提供了额外吸附位。H2O的等量吸附热升高,吸附位移向吸附作用更强的低相互作用能区域,吸附大量水形成水团簇,与CO2竞争吸附位,并且占据吸附空间抑制CO2、O2、N2的吸附,使其吸附量降低50%以上,因此,注入烟气时应充分考虑采空区煤体的含水率问题。
  • 图  1  退火优化过程中煤的密度及能量变化

    Figure  1  Density and energy changes of coal during annealing process

    图  2  不同含水率的湿煤构型示意图

    Figure  2  Wet coal structure models with different moisture content

    图  3  纯水与烟气中水在干煤中的吸附量对比

    Figure  3  Comparison of adsorption capacity between pure water and water in flue gas on dry coal

    ■: 298.15K pure H2O; ◆: 298.15K H2O in flue gas; ●: 303.15K pure H2O; □: 303.15K H2O in flue gas; ▲: 313.15K pure H2O; ○: 313.15K H2O in flue gas; ▼: 318.15K pure H2O; ◇: 318.15K H2O in flue gas

    图  4  烟气各组分在干煤中的吸附量

    Figure  4  Adsorption amount of flue gas components on dry coal

    (a): □: 298.15K CO2; △: 313.15K CO2; ○: 303.15K CO2; ∇: 318.15K CO2; ■: 298.15K N2; ▲: 313.15K N2; ●: 303.15K N2; ▼: 318.15K N2
    (b): ◀: 298.15K O2; ◁: 298.15K H2O; ▷: 303.15K O2; ▷: 303.15K H2O; ◆: 313.15K O2; ◇: 313.15K H2O; ★: 318.15K O2; ☆: 318.15K H2O

    图  5  烟气各组分间在干煤中的吸附选择性

    Figure  5  Adsorption selectivity of flue gas components on dry coal

    □: 298.15K CO2/N2; ○: 303.15K CO2/N2; △: 313.15K CO2/N2; ∇: 318.15K CO2/N2; : 298.15K CO2/O2; : 303.15K CO2/O2; : 313.15K CO2/O2; : 318.15K CO2/O2; ■: 298.15K CO2/H2O; ●: 303.15K CO2/H2O; ▲: 313.15K CO2/H2O; ▼: 318.15K CO2/H2O

    图  6  烟气中各组分在不同含水率湿煤中的吸附量

    Figure  6  Adsorption amount of flue gas components on wet coal with different moisture

    ■: dry coal; ●: coal with 1.0% H2O; ▲: coal with 2.9% H2O; ▼: coal with 4.8% H2O; ◀: coal with 6.5% H2O; ▶: coal with 8.3% H2O

    图  7  烟气组分在不同含水率煤中的吸附量和等量吸附热

    Figure  7  Adsorption amount and isosteric heat of flue gas components on coal with different moisture

    : H2O; : CO2; : N2; : O2

    图  8  烟气在不同含水率湿煤中吸附的能量变化

    中文注解

    Figure  8  Energy variety of flue gas in various moisture of wet coal(CO2/O2/N2/H2O=15/5/77/3)

    : van der waals energy; : electrostatic energy; : interaction energy; : intramolecular energy

    图  9  烟气在不同含水率湿煤中的吸附密度分布图

    Figure  9  Probability density distribution of flue gas in various moisture of wet coal

    (a) moisture 1.0%; (b) moisture 2.9%; (c) moisture 4.8%; (d) moisture 8.3%

    图  10  H2O和CO2在不同含水率煤中吸附时的能量分布

    Figure  10  Energy distribution of H2O and CO2 adsorbed in different moisture coal(CO2/O2/N2/H2O=15/5/77/3)

    ■: H2O in 1.0% moisture coal; ●: H2O in 2.9% moisture coal; ▲: H2O in 4.8% moisture coal; ▼: H2O in 8.3% moisture coal; □: CO2 in 1.0% moisture coal; ○: CO2 in 2.9% moisture coal; △: CO2 in 4.8% moisture coal; ∇: CO2 in 8.3% moisture coal

  • [1] METZ B. IPCC Special Report on Carbon dioxide Capture and Storage[M]. UK:Cambridge University, 2005.
    [2] OTTIGER S, PINI R, STORTI G, MAZZOTTI M. Measuring and modeling the competitive adsorption of CO2, CH4, and N2 on a dry coal[J]. Langmuir, 2008, 24(17):9531-9540. doi: 10.1021/la801350h
    [3] SYED A, DURUCAN S, SHI J Q, KORRE A. Flue Gas Injection for CO2 Storage and Enhanced Coalbed Methane Recovery:Mixed Gas Sorption and Swelling Characteristics of Coals[J]. Energy Procedia, 2013, 37(2):6738-6745. http://www.sciencedirect.com/science/article/pii/S1876610213008503
    [4] LAW H S, MEER L G H V D, GUNTER W D. Comparison of Numerical Simulators for Greenhouse Gas Storage in Coal Beds, Part Ⅱ:Flue Gas Injection[C]. Greenh Gas Con Techno-6th Int Conference, 2003:563-568.
    [5] XU D, ZHANG J, LI G, XIAO P, WEBLEY P, ZHAI Y C. Effect of water vapor from power station flue gas on CO2 capture by vacuum swing adsorption with activated carbon[J]. J Fuel Chem Technol, 2011, 39(3):169-174. doi: 10.1016/S1872-5813(11)60016-9
    [6] 尚帅超. 电厂烟气预防自燃与封存的可行性研究[D]. 阜新: 辽宁工程技术大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10147-1011024632.htm

    SHANG Shuai-chao. Feasibility study of the power plant haze been to prevent spontaneous combustion and sealed[D]. Fuxin:Liaoning Technical University, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10147-1011024632.htm
    [7] 贾宝山, 尹彬, 张卫亮, 韩光.烟道气预防采空区自燃的数值模拟及参数确定[J].采矿与安全工程学报, 2015, 32(6):1043-1048. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506029.htm

    JIA Bao-shan, YIN Bin, ZHANG Wei-liang, HAN Guang. Numerical simulation and parameter determination in goaf spontaneous combustion prevention by injecting flue gas[J]. J Min Saf Eng, 2015, 32(6):1043-1048. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506029.htm
    [8] 贾宝山, 尹彬, 闫玉岗, 等. 煤矿坑口电厂烟道气用于采空区防灭火技术研究[J]. 中国安全生产科学技术, 2014, 10(7): 49-54. http://d.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201407011

    JIA Bao-shan, YIN Bin, YAN Yu-gang, HAN Guang. Research on technology of applying the flue gas of pithead power plant to fire prevention and extinguishing in goaf[J]. J Saf Sci Technol, 2014, 10(7):49-54. http://d.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201407011
    [9] 高飞, 邓存宝, 王雪峰, 武司苑.烟气注入采空区封存的可行性与安全性分析[J].中国安全生产科学技术, 2016, 12(5):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201607014.htm

    GAO Fei, DENG Cun-bao, WANG Xue-feng, WU Si-yuan. Analysis on feasibility and safety in sealing of smoke injected into goaf[J]. J Saf Sci Technol, 2016, 12(5):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201607014.htm
    [10] 高飞, 邓存宝, 王雪峰, 武司苑.常温常压下采空区遗煤对电厂烟气的吸附[J].环境工程学报, 2016, 10(4):1907-1912. doi: 10.12030/j.cjee.20160452

    GAO Fei, DENG Cun-bao, WANG Xue-feng, WU Si-yuan. Adsorption of power plant flue gas by abandoned coal at normal temperature and pressure[J]. Chin J Environ Eng, 2016, 10(4):1907-1912. doi: 10.12030/j.cjee.20160452
    [11] AHN H, LEE C H. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds[J]. Chem Eng Sci, 2004, 59(13):2727-2743. doi: 10.1016/j.ces.2004.04.011
    [12] PAN Z, CONNELL L D, CAMILLERI M, CONNELLY L. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel, 2010, 89(11):3207-3217. doi: 10.1016/j.fuel.2010.05.038
    [13] 赵东, 冯增朝, 赵阳升.基于吸附动力学理论分析水分对煤体吸附特性的影响[J].煤炭学报, 2014, 39(3):518-523. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403023.htm

    ZHAO Dong, FENG Zeng-chao, ZHAO Yang-sheng. Effects of liquid water on coalbed methane adsorption characteristics based on the adsorption kinetic theory[J]. J China Coal Soc, 2014, 39(3):518-523. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403023.htm
    [14] KROOSS B M, VAN Bergen F, GENSTERBLUM Y, SIEMONS N., PAGNIER H J M, DAVID P. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. Int J Coal Geol, 2002, 51(2):69-92. doi: 10.1016/S0166-5162(02)00078-2
    [15] 刘高峰, 张子戌, 宋志敏, 郎伟伟.高温高压平衡水条件下煤吸附CH4实验[J].煤炭学报, 2012, 37(5):794-797. http://d.wanfangdata.com.cn/Periodical/mtxb201205014

    LIU Gao-feng, ZHANG Zi-xu, SONG Zhi-min, LANG Wei-wei. Adsorption experiments on CH4 under the conditions of high temperature and pressure and equilibrium water[J]. J China Coal Soc, 2012, 37(5):794-797. http://d.wanfangdata.com.cn/Periodical/mtxb201205014
    [16] CLARKSON C R, BUSTIN R M. Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. Int J Coal Geol, 2000, 42(4):241-271. doi: 10.1016/S0166-5162(99)00032-4
    [17] 王俊峰, 张力, 赵东.温度及含水率对切削原煤吸附瓦斯特性的影响[J].煤炭学报, 2012, 36(12):2086-2091. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112025.htm

    WANG Jun-feng, ZHANG Li, ZHAO Dong. Effect of temperature and moisture on raw coal adsorption characteristics[J]. J China Coal Soc, 2012, 36(12):2086-2091. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112025.htm
    [18] 张时音, 桑树勋, 杨志刚.液态水对煤吸附甲烷影响的机理分析[J].中国矿业大学学报, 2009, 38(5):707-712. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200905022.htm

    ZHANG Shi-yin, SANG Shu-xun, YANG Zhi-gang. Mechanism analysis on the effect of liquid water on coal adsorbing methane[J]. J China Univ Min Technol, 2009, 38(5):707-712. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200905022.htm
    [19] JOUBERT J I, GREIN C T, BIENSTOCK D. Sorption of methane in moist coal[J]. Fuel, 1973, 52(3):181-185. doi: 10.1016/0016-2361(73)90076-8
    [20] DAY S, SAKUROVS R, WEIR S. Supercritical gas sorption on moist coals[J]. Int J Coal Geol, 2008, 74(3):203-214. https://www.sciencedirect.com/science/article/pii/S0166516208000311
    [21] LEE H H, KIM H J, SHI Y, KEFFER D, LEE C H. Competitive adsorption of CO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions[J]. Chem Eng J, 2013, 230(16):93-101. http://www.sciencedirect.com/science/article/pii/S1385894713008097
    [22] BROCHARD L, VANDSMME M, PELLENQ R J M, FEN Chong T. Adsorption-induced deformation of microporous materials:coal swelling induced by CO2-CH4 competitive adsorption[J]. Langmuir, 2012, 28(5):2659-2670. doi: 10.1021/la204072d
    [23] BILLEMONT P, COASNE B, DE Weireld G. An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water[J]. Langmuir, 2010, 27(3):1015-1024.
    [24] BILLEMONT P, COASNE B, DE Weireld G. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons:effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10):3328-3338. doi: 10.1021/la3048938
    [25] ZHANG J, CLENNELL M B, DEWHURST D N, LIU K. Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal[J]. Fuel, 2014, 122(15):186-197. http://www.sciencedirect.com/science/article/pii/S001623611400009X
    [26] 熊健, 刘向君, 梁利喜.甲烷在官能团化石墨中吸附行为的影响因素研究[J].中国矿业大学学报, 2017, 46(2):337-346. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201702018.htm

    XIONG Jian, LIU Xiang-jun, LIANG Li-xi. Investigation on the influence factors of the methane adsorption in functionalized graphite[J]. J China Univ Min Technol, 2017, 46(2):337-346. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201702018.htm
    [27] LIU X Q, HE X, QIU N X, YANG X., TIAN Z Y, LI M J, XUE Y. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal[J]. Appl Surf Sci, 2016, 389:894-905. doi: 10.1016/j.apsusc.2016.08.021
    [28] XU D, XIAO P, ZHANG J, LI G, XIAO G, WEBLEY P A, ZHAI Y. Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon[J]. Chem Eng J, 2013, 230(16):64-72. http://www.sciencedirect.com/science/article/pii/S1385894713008619
    [29] DI Biase E, SARKISOV L. Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon[J]. Carbon, 2015, 94:27-40. doi: 10.1016/j.carbon.2015.06.056
    [30] XIANG J, ZENG F G, Bin L I, ZHANG L, LI M F, LIANG H Z. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol, 2013, 41(4):391-400. doi: 10.1016/S1872-5813(13)60022-5
    [31] XIANG J, ZENG F G, LIANG H Z, SUN B L, ZHANG L, LI M F, JIA J B. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation[J]. J Fuel Chem Technol, 2011, 39(7):481-488. doi: 10.1016/S1872-5813(11)60031-5
    [32] HU H, LI X, FANG Z, WEI N, LI Q. Small-molecule gas sorption and diffusion in coal:Molecular simulation[J]. Energy, 2010, 35(7):2939-2944. doi: 10.1016/j.energy.2010.03.028
    [33] 相建华, 曾凡桂, 梁虎珍, 李彬, 宋晓夏. CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J].中国科学:地球科学, 2014, 44(7):1418-1428.

    XIANG Jian-hua, ZENG Fan-gui, LIANG Hu-zhen, LI Bin, SONG Xiao-xia. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Sci China:Earth Sci, 2014, 44(7):1418-1428.
    [34] MOHAMMAD S A, GASEM K A M. Multiphase analysis for high-pressure adsorption of CO2/water mixtures on wet coals[J]. Energ Fuels, 2012, 26(6):3470-3480. doi: 10.1021/ef300126x
  • 加载中
图(10)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  34
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-06-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回