留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学处理对神木煤显微组分表面结构及可浮性的影响研究

赵伟 杨志远 李振 周安宁

赵伟, 杨志远, 李振, 周安宁. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报(中英文), 2017, 45(4): 400-407.
引用本文: 赵伟, 杨志远, 李振, 周安宁. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报(中英文), 2017, 45(4): 400-407.
ZHAO Wei, YANG Zhi-yuan, LI Zhen, ZHOU An-ning. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 400-407.
Citation: ZHAO Wei, YANG Zhi-yuan, LI Zhen, ZHOU An-ning. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 400-407.

电化学处理对神木煤显微组分表面结构及可浮性的影响研究

基金项目: 

国家自然科学基金 51404194

国土资源部煤炭资源勘查与综合利用重点实验室项目 KF2015-2

西安科技大学培育基金 201622

详细信息
    通讯作者:

    周安宁, Tel:029-85583182, E-mail:psu564@139.com

  • 中图分类号: TQ536

Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals

Funds: 

the National Natural Science Foundation of China 51404194

Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources of China KF2015-2

Cultivation Fund of Xi'an University of Science and Technology 201622

  • 摘要: 为建立煤岩显微组分的电化学浮选分离方法,以铝为电极,考察了阳极和阴极电化学处理对神木煤镜质组和惰质组表面结构及表面电位和润湿性的影响规律。结果表明,电化学处理对煤岩显微组分表面-OH、-COOH等含氧官能团影响显著;阳极处理使显微组分表面zeta电位向负电方向偏移,且润湿性增加,阴极处理则使其向正电方向偏移,润湿性减小;阳极处理后镜质组接触角的变化趋势更为显著,而阴极处理对于惰质组的影响更为明显。
  • 图  1  SMV和SMI的红外光谱谱图

    Figure  1  FT-IR spectrograms of SMV and SMI

    图  2  SMV和SMI羟基红外光谱多峰拟合

    Figure  2  Multi peak fitting of hydroxyl of SMV and SMI

    图  3  SMV和SMI脂肪烃红外光谱分峰拟合

    Figure  3  Multi peak fitting of aliphatic hydrocarbon of SMV and SMI

    图  4  经电化学阳极处理的SMV和SMI的红外光谱谱图

    Figure  4  FT-IR spectrograms of SMV and SMI treated with electrochemical anode

    图  5  经电化学阴极处理的SMV和SMI的红外光谱谱图

    Figure  5  FT-IR spectrograms of SMV and SMI treated with electrochemical cathode

    图  6  电化学阳极处理对SMV和SMI表面zeta电位的影响

    Figure  6  Effects of the treatment with electrochemical anode on zeta potential of SMV and SMI

    图  7  电化学阴极处理对SMV和SMI表面zeta电位的影响

    Figure  7  Effects of the treatment with electrochemical cathode on zeta potential of vitrinite and inertinite

    图  8  电化学处理时间对显微组分接触角的影响

    Figure  8  Influence of the electrochemical treatment time on contact angles of Shenmu macerals

    表  1  神木煤的工业分析及显微组分组成

    Table  1  Proximate and maceral composition of Shenmu coal samples

    Sample Proximate w/% Maceral composition /%
    Mad Ad Vdaf FCad Vitrinite Inertinite Liptinite Minerals
    Raw coal 7.29 3.14 39.47 54.36 62.7 33.5 0.8 3.0
    Vitrinite concentrate (SMV) 9.15 2.96 41.26 51.79 95.4 2.4 1.2 1.0
    Inertinite concentrate (SMI) 7.64 4.37 33.53 58.71 3.1 93.4 0.6 2.9
    下载: 导出CSV

    表  2  SMV和SMI红外光谱的主要吸收峰归属及峰面积

    Table  2  Assignment and area of FT-IR peak for SMV and SMI

    Wavenumber σ/ cm-1 Assignment of spectral peak Peak area
    SMV SMI
    3 600-3 100 -OH, -NH stretching vibration 31.26 19.86
    3 100-3 000 -CH (Ar) stretching vibration 0.38 1.92
    3 000-2 900 -CH3, -CH2, -CH symmetrical stretching vibration 7.84 4.63
    2 880-2 800 -CH3, -CH2 asymmetrical stretching vibration 1.75 1.61
    1 790-1 680 C=O, -COOH stretching vibration 15.09 18.62
    1 680-1 520 aromatic C=C stretching vibration, C=O conjugate vibration 12.67 13.23
    1 520-1 400 -CH3, -CH2 symmetric bending vibration 4.09 2.33
    1 200-950 C-O stretching vibration 9.31 8.19
    950-700 substituted aromatic C-H out of plane bending vibration 8.41 10.62
    下载: 导出CSV

    表  3  SMV和SMI脂肪烃红外分峰官能团及参数

    Table  3  Functional groups and absorption peak parameters of aliphatic hydrocarbon of SMV and SMI from FT-IR peak resolution and fitting

    Wavenumber
    σ/cm-1
    Assignment of spectral peak Peak area Proportion of peak /%
    SMV SMI SMV SMI
    2 850 symmetry R2CH2 0.715 2 0.424 1 20.4 25.2
    2 880 symmetry RCH3 0.301 8 0.112 8 8.6 6.7
    2 900 R3CH 0.576 2 0.446 3 16.4 26.5
    2 920 asymmetry R2CH2 1.482 4 0.465 2 42.2 27.7
    2 950 asymmetry RCH3 0.438 6 0.232 9 12.5 13.9
    下载: 导出CSV

    表  4  接触角拟合参数

    Table  4  Fitting parameters of contact angles

    Fitting formula:y=a(x-b) Anode (+) Cathode (-)
    SMV SMI SMV SMI
    a -0.541 94 -0.258 51 0.296 23 0.436 57
    b 121.613 59 192.051 66 -219.719 35 -114.176 48
    R2 0.987 71 0.974 13 0.982 86 0.990 41
    下载: 导出CSV
  • [1] 李文华, 陈亚飞, 陈文敏, 李向利.中国主要矿区煤的显微组分分布特征[J].煤炭科学技术, 2000, 28(9):31-34. http://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200009011.htm

    LI Wen-hua, CHEN Ya-fei, CHEN Wen-min, LI Xiang-li. Distribution features of micro-constituents for coal in China main mining area[J]. Coal Sci Technol, 2000, 28(9):31-34. http://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200009011.htm
    [2] HELLE S, GORDON A, ALFARO G, GARCIÍA X, ULLOA C. Coal blend combustion:Link between Rachel Walker, Maria Mastalerz. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana:Controls on coking[J]. Int J Coal Geol, 2004, 58(3):181-191. doi: 10.1016/j.coal.2003.10.008
    [3] ZHAO Y, HU H, JIN L, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011, 92(4):780-786. doi: 10.1016/j.fuproc.2010.09.005
    [4] JIN L, HAN K, WANG J, HU H. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Process Technol, 2014, 128:232-237. doi: 10.1016/j.fuproc.2014.07.033
    [5] SHU X, WANG Z, XU J. Separation and preparation of macerals in Shenfu coals by flotation[J]. Fuel, 2002, 81:495-501. doi: 10.1016/S0016-2361(01)00106-5
    [6] 林治穆.煤显微组分的浮选法分离及富集物燃烧性能[J].山东矿业学院学报, 1990, 9(1):74-79. http://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199001012.htm

    LIN Zhi-mu. Separation of coal macerals (floation) and observation of coal combustion behavior[J]. J Shandong Min Inst, 1990, 9(1):74-79. http://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199001012.htm
    [7] FECKO P, PECTOVA I, OVCARI P, CABLIK V, TORA B. Influence of petrographical composition on coal flotability[J]. Fuel, 2005, 84(14/15):1901-1904. https://www.researchgate.net/publication/244067786_Influence_of_petrographical_composition_on_coal_flotability
    [8] JORJANI E, ESMAEILI S, KHORAMI M T. The effect of particle size on coal maceral group's separation using flotation[J]. Fuel, 2013, 114:10-15. doi: 10.1016/j.fuel.2012.09.025
    [9] ZHAO W, YANG F, LI Y, QU J, ZHOU A. Influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals[J]. Min Sci Technol, 2011, 21(6):761-766. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHKD201106003.htm
    [10] 宋强. 低阶煤显微组分浮选分离试验研究[D]. 内蒙: 内蒙古科技大学, 2015.

    SONG Qiang. Research on flotation separation of low rank coal maceral[D]. Inner Mongolia:Inner Mongolia University Science & Technology, 2015.
    [11] HONAKER R Q, MOHANTY M K, CRELLING J C. Coal maceral separation using column flotation[J]. Miner Eng, 1996, 9(4):449-464. doi: 10.1016/0892-6875(96)00030-1
    [12] HOWER J C, KUEHN K W, PAREKH B K, PETERS W J. Macerals and microlithotype beneficiation in column flotation at the Powell Mountain Coal Mayflower Preparation Plant, Lee County, Virginia[J]. Fuel Process Technol, 2000, 67(1):23-33. doi: 10.1016/S0378-3820(00)00090-4
    [13] BARRAZA J, PINERES J. A pilot-scale flotation column to produce beneficiated coal fractions having high concentration of vitrinite maceral[J]. Fuel, 2005, 84(14/15):1879-1883. https://www.researchgate.net/publication/244067303_A_pilot-scale_flotation_column_to_produce_beneficiated_coal_fractions_having_high_concentration_of_vitrinite_maceral
    [14] RAJU G B, KHANGAONKAR P R. Electro-flotation of chalcopyrite fines[J]. Int J Miner Process, 1982, 9(2):133-143. doi: 10.1016/0301-7516(82)90022-9
    [15] RAJU G B, KHANGAONKAR P R. Electroflotation of chalcopyrite fines with sodium diethyldithiocarbamate as collector[J]. Int J Miner Process, 1984, 13(3):211-221. doi: 10.1016/0301-7516(84)90004-8
    [16] SARKAR M, DONNE S, EVANS G. Hydrogen bubble flotation of silica[J]. Adv Powder Technol, 2010, 21(4):412-418. doi: 10.1016/j.apt.2010.04.005
    [17] SUN W, MA L, HU Y, DONG Y, ZHANG G. Hydrogen bubble flotation of fine minerals containing calcium[J]. Min Sci Technol, 2011, 21(4):591-597. https://www.researchgate.net/publication/251702208_Hydrogen_bubble_flotation_of_fine_minerals_containing_calcium
    [18] PABLO C, CARLOS J, FABIOLA M, MANUEL A R, CRISTINA S. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters[J]. J Hazard Mater, 2009, 163:158-164. doi: 10.1016/j.jhazmat.2008.06.073
    [19] ONCEL MS, DEMIRBAS A, KOBYA M. A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater[J]. J Environ Chem Eng, 2013, 1(4):989-995. doi: 10.1016/j.jece.2013.08.008
    [20] VU T P, VOGEL A, KERN F, PLATZ S, MENZEL U, GADOW R. Characteristics of an electrocoagulation-electroflotation process in separating powdered activated carbon from urban wasterwater effluent[J]. Sep Purif Technol, 2014, 34:196-203. https://www.researchgate.net/publication/264863272_Characteristics_of_an_electrocoagulation-electroflotation_process_in_separating_powdered_activated_carbon_from_urban_wastewater_effluent
    [21] LIAKOS T I, LAZARIDIS N K. Melanoisins removal from simulated and real wastewaters by coagulation and electro-flotation[J]. Chem Eng J, 2014, 242:269-277. doi: 10.1016/j.cej.2014.01.003
    [22] GOLZARY A, IMANIAN S, ABDOLI M A, KHODADADI A, KARBASSI A. A cost-effective strategy for marine microalgae separation by electro-coagulation-flotation process aimed at bio-crude oil production:Optimization and evaluation study[J]. Sep Purif Technol, 2015, 147:156-165. doi: 10.1016/j.seppur.2015.04.011
    [23] 张鸿波, 李永盛, 宁婷婷, 朱莹莹.酸性条件下煤电化学脱硫实验研究[J].黑龙江科技大学学报, 2014, 24(1):58-62. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201401014.htm

    ZHANG Hong-bo, LI Yong-sheng, NING Ting-ting, ZHU Ying-ying. Experiment of electrochemical desulfurization of coal under acidic conditions[J]. J Heilongjiang Univ Sci Technol, 2014, 24(1):58-62. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201401014.htm
    [24] GONG X Z, WANG M Y, WANG Z. Desulfuration of electrolyzed coal water slurry in HCl system with ionic liquid addition[J]. Fuel Process Technol, 2012, 99:6-12. doi: 10.1016/j.fuproc.2012.02.002
    [25] ZHU Y, LU XI, ZHU H. Research on factors affecting flotation and desulfurization of coal by electrochemical method[J]. J China Univ Min Techno, 2001, 11(2):138-141. http://www.cnki.com.cn/Article/CJFDTotal-zhkd200102008.htm
    [26] 朱红, 王淀佐, 李虎林, 欧泽深.电化学法对细粒煤表面改性机理的研究[J].煤炭学报, 2000, 25(3):307-311. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200003020.htm

    ZHU Hong, WANG Ding-zuo, LI Hu-lin, OU Ze-shen. Study on the mechanism of fine coal by electrochemical surface modification[J]. J China Coal Soc, 2000, 25(3):307-311. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200003020.htm
    [27] 林娟, 赵炜.煤及其含氧基团模拟物的电化学还原[J].电化学, 2007, 13(2):177-182. http://www.cnki.com.cn/Article/CJFDTOTAL-DHXX200702016.htm

    LIN Juan, ZHAO Wei. Electrochemical reduction of coals and the oxygenic fuctional simulacrums of coals[J]. Electrochem, 2007, 13(2):177-182.) http://www.cnki.com.cn/Article/CJFDTOTAL-DHXX200702016.htm
    [28] 董宪姝, 姚素玲, 刘爱荣, 王志忠.电化学处理煤泥水沉降特性的研究[J].中国矿业大学学报, 2010, 39(5):753-757. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201005023.htm

    DONG Xian-shu, YAO Su-ling, LIU Ai-rong, WANG Zhi-zhong. Settling characteristics of slurry pretreated by eletrochemistry[J]. J China Univ Min Technol, 2010, 39(5):753-757. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201005023.htm
    [29] 舒新前, 王祖讷, 徐精求, 葛岭梅.神府煤煤岩组分的结构特征及其差异[J].燃料化学学报, 1996, 24(5):426-433. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX605.008.htm

    XU Xin-qian, WANG Zu-ne, XU Jing-qiu, GE Ling-mei. Structural characteristics and differences among lithotypes[J]. J Fuel Chem Technol, 1996, 24(5):426-433. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX605.008.htm
    [30] 段旭琴, 王祖讷, 曲剑午.神府煤惰质组与镜质组的结构性质研究[J].煤炭科学技术, 2004, 32(2):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200402006.htm

    DUAN Xu-qin, WANG Zu-ne, QU Jian-wu. Study on structural property of inertinite and vitrinite of Shenfu coal[J]. Coal Sci Technol, 2004, 32(2):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200402006.htm
    [31] 赵伟, 张晓欠, 周安宁, 杨志远.神府煤煤岩显微组分的浮选分离及富集物的低温热解产物特性研究[J].燃料化学学报, 2014, 42(5):527-533. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18405.shtml

    ZHAO Wei, ZHANG Xiang-qian, ZHOU An-ning, YANG Zhi-yuan. Flotation separation of Shenfu coal macerals and low temperature pyrolysis characteristics of different maceral concentrate[J]. J Fuel Chem Technol, 2014, 42(5):527-533. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18405.shtml
    [32] PAINTER P C, SOCBKOWIAK M, YOUTCHEFFT J. FT-IR study of hydrogen bonding in coal[J]. Fuel, 1987, 66(7):973-978. doi: 10.1016/0016-2361(87)90338-3
    [33] ZHAO W, YANG F S, LI Y G, QU J L, ZHOU A N. The influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals[J]. Min Sci Technol, 2011, 21:761-766. https://www.researchgate.net/publication/257680736_Influence_of_microwave_treatment_under_a_hydrogen_or_methane_atmosphere_on_the_flotability_of_the_macerals_in_Shenfu_coals
    [34] 王宝俊, 李敏, 赵清艳, 秦育红, 谢克昌.煤的表面电位与表面官能团间的关系[J].化工学报, 2004, 55(8):1329-1333. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200408019.htm

    WANG Bao-jun, LI Min, ZHAO Qing-yan, QIN Yu-hong, XIE Ke-chang. Relationship between surface potential and functional groups of coals[J]. J Chem Ind Eng, 2004, 55(8):1329-1333. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200408019.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-09
  • 修回日期:  2017-02-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-04-10

目录

    /

    返回文章
    返回