留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO对Cu-ZnO-ZrO2催化CO2加H2合成甲醇性能影响

陈俊军 高文桂 王华 纳薇

陈俊军, 高文桂, 王华, 纳薇. CaO对Cu-ZnO-ZrO2催化CO2加H2合成甲醇性能影响[J]. 燃料化学学报(中英文), 2016, 44(4): 437-448.
引用本文: 陈俊军, 高文桂, 王华, 纳薇. CaO对Cu-ZnO-ZrO2催化CO2加H2合成甲醇性能影响[J]. 燃料化学学报(中英文), 2016, 44(4): 437-448.
CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 437-448.
Citation: CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 437-448.

CaO对Cu-ZnO-ZrO2催化CO2加H2合成甲醇性能影响

基金项目: 

国家自然科学基金 51304099

云南省应用基础研究计划 2013FZ035

国家科技支撑计划 2011BAC01B03

详细信息
  • 中图分类号: O643.3

Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2

More Information
  • 摘要: 用CaO作为改性助剂,采用并流共沉淀法制备了CuO:ZnO:ZrO2为5:4:1(物质的量比),CaO添加量为0、1%、2%、4%、8%、16%(摩尔分数)的六组催化剂。用X射线衍射(XRD)、微商热重(TG-DTG)、傅里叶红外(FT-IR)、N2吸附脱附(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)、CO2程序升温脱附(CO2-TPD)、NH3程序升温脱附(NH3-TPD)对催化剂进行了表征。用自制固定床评价了催化剂活性。结果表明,添加CaO后,催化剂路易斯酸性和表面碱性增强;催化剂母体中高温碳酸盐含量增加,热稳定性增强,CuO颗粒粒径变小,Cu-Zn协同作用增强,Cu比表面积增大,分散性变好。催化剂活性受到表面酸碱性、铜比表面积、Cu-Zn协同作用和铜分散性共同影响。当CaO为2%时,铜比表面积为79.3 m2/g、铜分散度为34.8%、CO2转化率为24.55%、甲醇选择性为19.01%、甲醇收率为0.044 g/(gcat·h),催化剂活性最好。过量CaO占据催化剂孔道和覆盖表面活性位,使催化剂路易斯酸性和表面碱性过强,CuO与H2有效接触减少,CO2难以脱附,催化活性下降。因此,适量CaO(2%)添加可促进CO2加氢反应合成甲醇。
  • 图  1  催化剂前驱体的XRD谱图

    Figure  1  XRD patterns of the catalyst precursors

    图  2  催化剂前驱体热分析曲线

    Figure  2  Curves of thermal analysis of the catalyst precursors

    图  3  催化剂前驱体FT-IR 谱图

    Figure  3  FT-IR profiles of the catalyst precursors

    a: P-CaO16%; b: P-CaO8%; c: P-CaO4%; d: P-CaO2%; e:P-CaO1%; f: P-blank

    图  4  催化剂母体XRD谱图

    Figure  4  XRD patterns of the precatalysts

    图  5  催化剂的XRD谱图

    Figure  5  XRD patterns of the catalysts

    图  6  催化剂母体SEM照片

    Figure  6  SEM images of the catalysts

    (a): M-blank; (b): M-CaO2%

    图  7  催化剂母体氮气吸附脱附曲线

    Figure  7  Nitrogen adsorption desorption curves of the catalysts

    图  8  催化剂母体孔径分布

    Figure  8  Pore size distribution of the catalysts

    图  9  催化剂母体XPS Cu 2p谱图

    Figure  9  Cu 2p XPS patterns of the catalysts

    图  10  催化剂母体XPS Zn 2p谱图

    Figure  10  Zn 2p XPS patterns of the catalysts

    图  11  催化剂母体红外光谱谱图

    Figure  11  FT-IR profiles of the catalysts

    a: M-CaO16%; b: M-CaO8%; c: M-CaO4%; d: M-CaO2%; e: M-CaO1%; f: M-blank

    图  12  不同焙烧温度催化剂母体红外光谱谱图

    Figure  12  FT-IR profiles of the catalysts calcined at different temperatures

    图  13  催化剂的H2-TPR谱图

    Figure  13  H2-TPR profiles of the catalysts

    图  14  催化剂的TEM照片

    Figure  14  TEM images of the catalysts

    (a): CZZblank; (b): CZZCaO2%

    图  15  催化剂的CO2-TPD谱图

    Figure  15  CO2-TPD profiles of the catalysts

    图  16  催化剂的NH3-TPD谱图

    Figure  16  NH3-TPD profiles of the catalysts

    表  1  催化剂前驱体热分析

    Table  1  Thermal analysis data of the catalyst precursors

    SampleP-blankP-CaO1%P-CaO2%P-CaO4%P-CaO8%
    Decomposition stagesweight loss w/%DTG maximum peak position t/℃weight loss w/%DTG maximum peak position t/℃weight loss w/%DTG maximum peak position t/℃weight loss w/%DTG maximum peak position t/℃weight loss w/%DTG maximum peak position t/℃
    60-200℃8.223.024.982.763.25
    200-400℃13308.913.63316.216.16332.815.77313.1,373.615.25319.6
    400-560℃3.29458.95.21480.35.6512.83.36463.24.38466.0
    下载: 导出CSV

    表  2  催化剂母体孔结构参数

    Table  2  Pore structure parameters of the catalysts

    CatalystM-blankM-CaO1%M-CaO2%M-CaO4%M-CaO8%M-CaO16%
    ABET/(m2·g-1)77.497.399.8100.69489.1
    v/(mL·g-1)0.2370.3050.3210.3220.2980.252
    d(CuO) /nm10.97.36.09.010.510.7
    d(ZnO) /nm16.812.36.315.715.416.2
    下载: 导出CSV

    表  3  催化剂H2-TPR还原峰数据

    Table  3  H2-TPR reduction peaks of the catalysts

    Catalystαβα/(α+β)
    Area /(mV·℃)tmax /℃Area /(mV·℃)tmax /℃
    CZZblank2574230.46223266.90.29
    CZZCaO1%24872295704260.60.30
    CZZCaO2%2871226.95277258.20.35
    CZZCaO4%235923355652640.30
    CZZCaO8%1963217.45880251.10.25
    CZZCaO16%1652226.34555254.80.27
    下载: 导出CSV

    表  4  催化剂的催化性能

    Table  4  Reaction performance of the catalysts

    Catalysts(CH3OH) /%x(CO2) /%w(CH3OH) /(g·gcat-1·h-1)A(Cu) /(m2·g-1)D(Cu) /%
    CZZblank12.0922.060.02248.617.8
    CZZCaO1%16.0825.10.03850.8620.5
    CZZCaO2%19.0124.550.04479.334.8
    CZZCaO4%14.0924.440.03214.97.1
    CZZCaO8%13.6924.070.02627.811.6
    CZZCaO16%13.2123.10.02722.510.2
    A(Cu): the copperspecific surface area; D(Cu): the dispersion degree of copper;
    reaction conditions: t= 250℃,p=3MPa,H2 /CO2= 3∶1(volume ratio) and SV=3000mL/(g·h)
    下载: 导出CSV
  • [1] STEWART C, HESSAMI M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach[J]. Energy Convers Manage, 2005, 46(3): 403-420. doi: 10.1016/j.enconman.2004.03.009
    [2] LI L, ZHAO N, WEI W, SUN Y H. A review of research progress on CO2 capture, storage, and utilization in Chinese academy of sciences[J]. Fuel, 2013, 108: 112-130. doi: 10.1016/j.fuel.2011.08.022
    [3] ARESTA M, DIBENEDETTO A. Utilization of CO2 as a chemical feedstock: Opportunities and challenges[J]. Dalton Trans, 2007, 28: 2975-2992. https://www.researchgate.net/publication/6216482_Utilisation_of_CO2_as_a_chemical_feedstock_opportunities_and_challenges
    [4] SHAMSUL N S, KAMARUDIN S K, RAHMAN N A, KOFLI N T. An overview on the production of bio-methanol as potential renewable energy[J]. Renew Sust Energy Rev, 2014, 33(2): 578-588. https://www.researchgate.net/publication/260758801_An_overview_on_the_production_of_bio-methanol_as_potential_renewable_energy
    [5] BAIKER A. Utilization of carbon dioxide in heterogeneous catalytic synthesis[J]. Appl Organomet Chem, 2000, 14(12): 751-762. doi: 10.1002/(ISSN)1099-0739
    [6] NATESAKHAWAT S, LEKSE J W, BALTRUS J P, OHODNICKI JR P R, HOWARD B H, DENG X Y, MATRANGA C. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol[J]. ACS Catal, 2012, 2(8): 1667-1676. doi: 10.1021/cs300008g
    [7] LI C M, YUAN X D, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen, 2014, 469: 306-311. https://www.researchgate.net/publication/270924206_Development_of_highly_stable_catalyst_for_methanol_synthesis_from_carbon_dioxide
    [8] MA Y, SUN Q, WU D, FAN W H, ZHANG Y L, DENG J F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 1998, 171(1): 45-55. doi: 10.1016/S0926-860X(98)00079-9
    [9] SLOCZYNSKI J, GRABOWSKI R, OLSZEWSKI P, KOZLOWSKA A, STOCH J, LACHOWSKA M, SKRZYPEK J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Appl Catal A: Gen, 2006, 310(8): 127-137. https://www.researchgate.net/publication/272071371_The_Influence_of_ZnZr_Ratios_on_CuO-ZnO-ZrO2_Catalysts_for_Methanol_Synthesis_from_CO2_Hydrogenation
    [10] SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, LACHOWSKA M, SKRZYPEK J, STOCH J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen, 2003, 249(1): 129-138. doi: 10.1016/S0926-860X(03)00191-1
    [11] BAN H Y, LI C M, ASAMI K J, FUJIMOTO K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2[J]. Catal Commun, 2014, 54: 50-54. doi: 10.1016/j.catcom.2014.05.014
    [12] TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y H, VITIDSANT T, TSUBAKI N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen, 2015, 505: 141-149. doi: 10.1016/j.apcata.2015.08.002
    [13] ZHONG C L, GUO X M, MAO D S, WANG S, WU G S, LU G Z. Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis via CO2 hydrogenation[J]. RSC Adv, 2015, 5(65): 52958-52965. doi: 10.1039/C5RA06508A
    [14] ELIAS K F M, LUCREDIO A F, ASSAF E M. Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11): 4407-4417. doi: 10.1016/j.ijhydene.2013.01.162
    [15] MILLAR G J, HOLM I H, UWINS P J R, DRENNAN J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J Chem Soc Faraday, 1998, 94(4): 593-600. doi: 10.1039/a703954i
    [16] BEHRENS M, SCHLÖGL R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Z Anorg Allg Chem, 2013, 639(15): 2683-2695. doi: 10.1002/zaac.v639.15
    [17] LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures[J]. Appl Catal A: Gen, 1996, 137(1): 105-117. doi: 10.1016/0926-860X(95)00284-7
    [18] BEHRENS M, GIRGSDIES F, TRUNSCHKE A, SCHLÖGL R. Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic Zincian malachite,rosasite and aurichalcite and a catalyst precursor mixture[J]. Eur J Inorg Chem, 2009, 2009(10): 1347-1357. https://www.researchgate.net/publication/228012859_Minerals_as_Model_Compounds_for_CuZnO_Catalyst_Precursors_Structural_and_Thermal_Properties_and_IR_Spectra_of_Mineral_and_Synthetic_Zincian_Malachite_Rosasite_and_Aurichalcite_and_a_Catalyst_Precursor
    [19] BEMS B, SCHUR M, DASSENOY A, JUNKES H, HEREIN D, SCHLÖGL R. relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem Eur J, 2003, 9(9): 2039-2052. doi: 10.1002/chem.200204122
    [20] BALTES C, VUKOJEVI S, SCHUTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2): 334-344. doi: 10.1016/j.jcat.2008.07.004
    [21] ELIAS F, ACHIM S, THILO L, HARALD H, INGO K. The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem, 2014, 6(6): 1721-1730. doi: 10.1002/cctc.v6.6
    [22] 夏王琼, 唐浩东, 林胜达, 岑亚青, 刘化章. 甲醇合成Cu/ZnO催化剂前驱体的物相转变[J]. 催化学报, 2009, 30(9): 879-884. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200909007.htm

    XIA Wang-qiong, TANG Hao-dong, LIN Sheng-da, CEN Ya-qing, LIU Hua-zhang. Precursor phase transition of Cu/ZnO catalyst for methanol synthesis[J]. Chin J Catal, 2009, 30(9): 879-884. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200909007.htm
    [23] STOILOVA D, KOLEVA V, VASSILEVA V. Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series[J]. Spectrochi Acta A, 2002, 58(9): 2051-2059. doi: 10.1016/S1386-1425(01)00677-1
    [24] SONG F E, TAN Y S, XIE H J, ZHANG Q D, HAN Y Z. Direct synthesis of dimethylether from biomass-derived syngas over Cu-ZnO-Al2O3-ZrO2(x)/γ-Al2O3 bifunctional catalysts: Effect of Zr-loading[J]. Fuel Process Technol, 2014, 126: 88-94.
    [25] 张强, 徐征, 千载虎. 在CuO-ZnO及CuO-ZnO-ZrO2催化剂上CO2/H2低压合成甲醇的研究[J]. 催化学报, 1989, 10(1): 22-28.

    ZHANG Qiang, XU Zheng, QIAN Zai-hu. The study of low pressure synthesis for methanol from CO2/H2 on CuO-ZnO and CuO-ZnO-ZrO2 catalyst[J]. Chin J Catal, 1989, 10(1): 22-28.
    [26] ZHAO H J, LIN M G, FANG K G, ZHOU J, LIU Z Y, ZENG G F, SUN Y H. A novel Cu-Mn/Ca-Zr catalyst for the synthesis of methyl formate from syngas[J]. RSC Adv, 2015, 5(83): 67630-67637. doi: 10.1039/C5RA13555A
    [27] DAI W L, SUN Q, DENG J F, WU D, SUN Y H. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Appl Surf Sci, 2001, 177(3): 172-179. doi: 10.1016/S0169-4332(01)00229-X
    [28] GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010, 271(2): 178-185. doi: 10.1016/j.jcat.2010.01.009
    [29] BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ, 2014, 152-153: 152-161. https://www.researchgate.net/publication/260166753_The_changing_nature_of_the_active_site_of_Cu-Zn-Zr_catalysts_for_the_CO2_hydrogenation_reaction_to_methanol
    [30] GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011, 12(12): 1095-1098. doi: 10.1016/j.catcom.2011.03.033
    [31] 李基涛, 张伟德, 陈明旦, 区泽棠. 铜基催化剂上CO2吸附的TPD和TPSR研究[J]. 天然气化工, 1998, 23(5): 14-17.

    LI Ji-tao, ZHANG Wei-de, CHEN Ming-dan, OU Ze-tang. Study of TPD and TPSR of CO2 adsorption on Cu based catalyst[J].Nat gas Chem Eng, 1998, 23(5): 14-17.
    [32] HATTORI H. Heterogeneous basic catalysis[J]. Chem Rev, 1995, 95(3): 537-558. doi: 10.1021/cr00035a005
    [33] ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008, 350(1): 16-23. doi: 10.1016/j.apcata.2008.07.028
    [34] 徐友明, 沈本贤, 何金海, 罗锡辉. 用PASCA及NH3-TPD法表征Al2O3载体表面酸度[J]. 分析测试学报, 2006, 25(1): 41-44.

    XU You-ming, SHEN Ben-xian, HE Jin-hai, LUO Xi-hui. Study of surface acidity of γ-Al2O3 support by PASCA and NH3-TPD[J]. J Inst Anal, 2006, 25(1): 41-44.
    [35] JUNG K T, BEL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. J Mol Catal A: Chem, 2000, 163(1/2): 27-42. https://www.researchgate.net/publication/229127074_The_effects_of_synthesis_and_pretreatment_conditions_on_the_bulk_structure_and_surface_properties_of_zirconia
    [36] SAMSON K, ŠLIWA M, SOCHA R P, GORA-MAREK K., MUCHA D, RUTKOWSKA-ZBIK D, PAUL J F, RUGGIERO-MIKOLAJCZYK M, GRABOWSKI R, SŁOCZYNKI J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2[J]. ACS Catal, 2014, 4(10): 3730-3741.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  66
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-28
  • 修回日期:  2016-01-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回