留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预热处理对褐煤热解过程氧元素迁移的影响

李海杰 李晓红 冯杰 李文英

李海杰, 李晓红, 冯杰, 李文英. 预热处理对褐煤热解过程氧元素迁移的影响[J]. 燃料化学学报(中英文), 2019, 47(1): 1-7.
引用本文: 李海杰, 李晓红, 冯杰, 李文英. 预热处理对褐煤热解过程氧元素迁移的影响[J]. 燃料化学学报(中英文), 2019, 47(1): 1-7.
LI Hai-jie, LI Xiao-hong, FENG Jie, LI Wen-ying. Effect of preheating treatment on oxygen migration during lignite pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 1-7.
Citation: LI Hai-jie, LI Xiao-hong, FENG Jie, LI Wen-ying. Effect of preheating treatment on oxygen migration during lignite pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 1-7.

预热处理对褐煤热解过程氧元素迁移的影响

基金项目: 

国家重点研发计划煤炭清洁高效利用和新型节能技术重点专项 2016YFB0600305

国家自然科学基金重点支持项目 U1610221

国家自然科学基金重点支持项目 U1361202

国家自然科学基金青年项目 21706174

详细信息
  • 中图分类号: TQ530.2

Effect of preheating treatment on oxygen migration during lignite pyrolysis

Funds: 

the National Key Research and Development Program of China 2016YFB0600305

Key Projects supported by the National Natural Science Foundation of China U1610221

Key Projects supported by the National Natural Science Foundation of China U1361202

the National Natural Science Foundation Youth Project 21706174

More Information
  • 摘要: 以中国呼伦贝尔褐煤为原料,基于工业分析、元素分析、傅里叶变换红外光谱、气相色谱-质谱联用分析,考察140-230℃预热处理对褐煤650℃等温热解氧迁移的影响。结果表明,与未经预热处理的干煤热解相比,褐煤经200℃预热处理后热解,迁移至热解水和半焦中的氧分别下降7.55%和1.43%,迁移至焦油和气体中的氧分别增加6.66%和1.61%,焦油中酚类氧增加一倍。褐煤预热过程中氢键的减少与热解焦油中正己烷可溶物所含酚类化合物的增加,经原位红外漫反射光谱分析,发现源自OH…π、OH…N和羟基自缔合氢键在预热过程中断裂形成自由OH·,导致酚类化合物中苯酚和甲酚含量增加。
  • 图  1  实验装置及流程示意图

    Figure  1  Schematic of experimental process

    图  2  不同预热处理温度下褐煤热解产物分布

    Figure  2  Effect of the preheating temperature on the products distribution during lignite pyrolysis (NO: dry coal)

    图  3  不同预热处理温度下褐煤热解产气的组成

    Figure  3  Effect of the preheating temperature on the gas components of lignite pyrolysis

    a: CO; b:CO2; c: H2; d: CH4

    图  4  不同预热处理温度下热解焦油的FT-IR谱图

    Figure  4  FT-IR spectra of coal tar from pyrolysis of preheated lignite

    图  5  不同预热温度下褐煤热解焦油正己烷可溶物GC-MS分析

    Figure  5  GC-MS analysis of n-hexane extracted coal tar obtained from the pyrolysis of preheated lignite

    图  6  干煤和预热处理煤热解油中正己烷可溶物中酚类及酚类氧含量分析

    Figure  6  Quantitative analysis of phenols (a) and phenolic oxygen (b) present in the n-hexane extracted coal tar

    图  7  650 ℃下热解褐煤的氧迁移路径

    Figure  7  Oxygen migration paths in coal pyrolysis at 650 ℃

    (a): dry lignite; (b): 200 ℃ pretreated lignite

    图  8  不同预处理温度下褐煤的原位漫反射光谱谱图

    Figure  8  In situ diffuse reflectance spectra of lignite treated at different preheating temperatures

    图  9  110 ℃预热处理褐煤的FT-IR光谱分峰拟合谱图

    Figure  9  Fitting results of FT-IR spectral peaks for 110 ℃ pretreated lignite

    表  1  褐煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of lignite

    Proximate analysis wad/% Ultimate analysis# wdaf/%
    M A V FC C H O N S
    11.44 13.11 33.08 42.37 68.65 4.97 25.92 0.97 0.32
    note: # all data are directly detected by vario MACRO cube elementar, detailed measurement methods see section 1.3.1
    下载: 导出CSV

    表  2  不同预热处理温度下热解产物中氧分布

    Table  2  Distribution of oxygen in pyrolysis products at different preheating temperatures

    Temperature t / ℃ Oxygen distribution w/%
    char-O water-O tar-O gas-O
    NO 21.00 41.84 2.41 28.49
    140 20.97 39.44 5.00 28.36
    170 20.94 37.45 6.20 28.98
    200 19.57 34.29 9.07 30.10
    230 25.54 32.58 6.40 28.41
    下载: 导出CSV

    表  3  不同预热处理温度下热解焦油各吸收峰透射率

    Table  3  Transmittance values of specific functional groups of coal tar obtained from the pyrolysis of preheated lignite

    Radical Transmissivity /%
    NO 140 ℃ 170 ℃ 200 ℃ 230 ℃
    -OH (3400 cm-1) 58.84 52.80 46.44 28.45 36.21
    C-H (2900 cm-1) 54.15 50.70 41.52 20.48 40.52
    C=O (1660 cm-1) 58.43 58.18 53.38 41.25 52.63
    C-O (1230 cm-1) 57.59 51.76 44.41 21.45 46.23
    下载: 导出CSV

    表  4  子峰位置及其归属

    Table  4  Location and attribution of sub-peaks

    The band assignments of sub-peak Position of sub-peak σ /cm-1
    Free OH 3611±5
    OH…π hydrogen bond 3538±4
    Self-associated OH 3415±5
    OH…ether hydrogen bond 3300±2
    Cyclic OH tetramers 3150±8
    Aromatic C-H 3050±2
    OH…N hydrogen bond 2940±4
    Aliphatic C-H 2857±1
    下载: 导出CSV

    表  5  不同预热温度酚羟基及酚羟基氢键定量

    Table  5  Quantitative of phenolic hydroxyl group and hydrogen bond at different preheating temperatures

    Temperature t/ ℃ Ar-OH / (mmol·g-1) Free OH / (mmol·g-1) Hydrogen bond /(mmol·g-1)
    OH…π self-associated OH OH…O cyclic OH tetramers OH…N
    NO 3.11 0.14 0.73 1.20 0.51 0.08 0.45
    140 3.10 0.17 0.73 1.18 0.51 0.08 0.43
    170 3.10 0.28 0.68 1.13 0.53 0.08 0.40
    200 3.09 0.77 0.54 0.93 0.49 0.06 0.30
    note: Ar-OH is phenolic hydroxyl group
    下载: 导出CSV
  • [1] DENG J, ZHAO J Y, XIAO Y, ZHANG Y N, HUANG A C, SHU C M. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal[J]. J Therm Anal Calorim, 2017, 129(3):1779-1786. doi: 10.1007/s10973-017-6331-3
    [2] YE C P, HUANG H J, LI X H, LI W Y, FENG J. The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes[J]. Fuel, 2017, 207:85-92. doi: 10.1016/j.fuel.2017.06.062
    [3] FENG X B, CAO J P, ZHAO X Y, SONG C, LIU T L, WANG J X, FAN X, WEI X Y. Organic oxygen transformation during pyrolysis of Baiyinhua lignite[J]. J Anal Appl Pyrolsis, 2015, 117:106-115. http://www.sciencedirect.com/science/article/pii/S0165237015302369
    [4] WANG Z B, WANG C, KANG R N, BIN F, WEI X L. Deoxygenation of Chinese long-flame coal in low-temperature pyrolysis[J]. J Therm Anal Calorim, 2017, 131(3):3025-3033. doi: 10.1007/s10973-017-6753-y
    [5] MOCHIZUKI Y, NAGANUMA R, TSUBOUCHI N. Influence of inherently-present oxygen-functional groups on coal fluidity and coke strength[J]. Energy Fuels, 2018, 32(2):1657-1664. doi: 10.1021/acs.energyfuels.7b03774
    [6] SUN M, MA X X, YAO Q X, YAO Q X, WANG R C, MA Y X, FENG G, SHANG J X, XU L, YANG Y H. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J]. Energy Fuels, 2011, 25(3):1140-1145. doi: 10.1021/ef101610z
    [7] HUANG X, CAO J P, SHI P, ZHAO X Y, FENG X B, ZHAO Y P, FAN X, WEI X Y, TAKARADA T. Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge[J]. J Anal Appl Pyrolysis, 2014, 110:353-362. doi: 10.1016/j.jaap.2014.10.003
    [8] 孔娇.煤热解过程中酚类化合物的生成规律[D].太原: 太原理工大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2395917

    KONG Jiao. Law of phenolic compounds formation in coal pyrolysis[D].Taiyuan: Taiyuan University of Technology, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2395917
    [9] 陶建红.褐煤中含氧官能团的测定与研究[J].河南化工, 2010, 27(8):8-10. doi: 10.3969/j.issn.1003-3467.2010.08.006

    TAO Jian-hong. Determination and study of oxygen functional groups in lignite[J]. Henan Chem Ind, 2010, 27(8):8-10. doi: 10.3969/j.issn.1003-3467.2010.08.006
    [10] SOLOMON P R, SERIO M A, DESPANDE G V, KROO E. Cross-linking reactions during coal conversion[J]. Energy Fuels, 1990, 4(1):42-54. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225280454/
    [11] ZENG C, WU H, HAYASHI J, LI C. Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal[J]. Fuel, 2005, 84(12):1586-1592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98723441f68aadf796337e9325fc8dc8
    [12] 王志青, 白宗庆, 李文, 李保庆, 陈皓侃.吡啶预处理抑制煤热解过程中交联反应的研究[J].燃料化学学报, 2008, 36(6):642-644. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17320.shtml

    WANG Zhi-qing, BAI Zong-qing, LI Wen, LI Bao-qing, CHEN Hao-kan. Study on inhibition of crosslinking reaction during coal pyrolysis by pyridine pretreatment[J]. J Fuel Chem Technol, 2008, 36(6):642-644. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17320.shtml
    [13] 王知彩, 潘春秀, 任世彪, 雷智平, 王晓玲, 水恒福.先锋褐煤的热处理和水热处理改质[J].燃料化学学报, 2015, 43(9):1033-1037. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18686.shtml

    WANG Zhi-cai, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, WANG Xiao-ling, SHUI Heng-fu. Heat treatment and hydrothermal treatment of Xianfeng lignite[J]. J Fuel Chem Technol, 2015, 43(9):1033-1037. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18686.shtml
    [14] 李文, 李东涛, 陈皓侃, 李保庆. o-烷基化对煤中氢键的调控及对热解特性的影响[J].燃料化学学报, 2003, 31(6):514-518. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16858.shtml

    LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing. Effects of o-alkylation on hydrogen bond and pyrolysis properties in coal[J]. J Fuel Chem Technol, 2003, 31(6):514-518. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract16858.shtml
    [15] MIURA K, MAE K, SAKURADA K, HASHWIOTO K. Hash pyrolysis of coal following thermal pretreatment at low-temperature[J]. Energy Fuels, 1992, 6(1):16-21. doi: 10.1021/ef00031a003
    [16] ALLARDICE D J. The Science of Victorian Brown Coal[M]. Oxford:Butterworth-Heinemann, 1991:103-150.
    [17] MIURA K, MAE K, LI W, KUSAKAWA T, MOROZUMI F, KUMAMO A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy Fuels, 2001, 15(3):599-610. doi: 10.1021/ef0001787
    [18] SCHAFER H N S. Determination of carboxyl groups in low rank coal[J]. Fuel, 1984, 63(5):723-726. doi: 10.1016/0016-2361(84)90178-9
    [19] 董鹏伟, 岳君容, 高士秋, 许光文.热预处理影响褐煤热解行为研究[J].燃料化学学报, 2012, 40(8):898-905. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17997.shtml

    DONG Peng-wei, YUE Jun-rong, GAO Shi-qiu, XU Guang-wen. Effect of thermal pretreatment on pyrolysis behavior of lignite[J]. J Fuel Chem Technol, 2012, 40(8):898-905. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17997.shtml
    [20] CAO J P, SHI P, ZHAO X Y, WEI X Y, TAKARADA T. Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst[J]. Fuel Process Technol, 2014, 123(7):34-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fabe7be168ed37196ac62a1be5bb03f4
    [21] PLATONOV V V, POLOVETSKYAYA O S, PROSKURYAKOV V A, SHAVYRINA O V. Pyrolysis kinetics of phenols from lignite semicoking tar[J]. Russ J Appl Chem, 2002, 75(11):1878-1882. doi: 10.1023/A:1022295027623
    [22] GENG C C, LI S Y, MA Y, YUE C T, HE J L, SHANG W L. Analysis and identification of oxygen compounds in longkou shale oil and shenmu coal tar[J]. Oil Share, 2012, 29(4):322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f6085262e48861350584c1a17a4b14c
    [23] YANI S, ZHANG D. An experimental study of sulphate transformation during pyrolysis of an Australian lignite[J]. Fuel Process Technol, 2010, 91(3):313-321. doi: 10.1016/j.fuproc.2009.11.002
    [24] ZOU L, JIN L J, LI Y, ZHU S W, HU H Q. Effect of tetrahydrofuran extraction on lignite pyrolysis under nitrogen[J]. J Anal Appl Pyrolysis, 2015, 112:113-120. doi: 10.1016/j.jaap.2015.02.010
    [25] LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153:176-182. doi: 10.1016/j.fuel.2015.02.117
    [26] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12):1664-1683. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dd8e1cc925b5df85cc11ee7b35bf753
    [27] FILLO J P. An understanding of phenolic compound production in coal gasification processing[D]. Pittsburgh: Carnegie Mellon University, 1979.
    [28] 谢童英.白音华褐煤热解及酚类化合物分布研究[D].大连: 大连理工大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1247908

    XIE Tong-ying. Study on pyrolysis and distribution of phenolic compounds from Baiyinhua lignite[D]. Dalian: Dalian University of Technology, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1247908
    [29] HUGGINS C M, PIMENTEL G C. Systematics of the infrared spectral properties of hydrogen bonding systems:Frequency shift, half width and intensity[J]. J Phys Chem, 2002, 60(12):55-57. doi: 10.1021/j150546a004
    [30] PAINTER P C, SOBKOWIAK M, YOUTCHEFF J. FT-IR study of hydrogen bonding in coal[J]. Fuel, 1987, 66(7):973-978. doi: 10.1016/0016-2361(87)90338-3
    [31] FULLER E L, SMYRL N R. Chemistry and structure of coals:Hydrogen bonding structures evaluated by diffuse reflectance infrared spectroscopy[J]. Appl Spectrosc, 1990, 44(3):451-461. doi: 10.1366-0003702904086056/
    [32] CHEN C, JINSHENG GAO A, YAN Y. Observation of the type of hydrogen bonds in coal by FT-IR[J]. Energy Fuels, 1998, 12(3):446-449. doi: 10.1021/ef970100z
    [33] 陈茺, 许学敏, 高晋生, 颜涌捷, 李伟, 郭新闻.煤中氢键类型的研究[J].燃料化学学报, 1998, 26(2):141-144. http://d.old.wanfangdata.com.cn/Periodical/jzsfgdzkxxxb201103010

    CHEN Chong, XU Xue-min, GAO Jin-sheng, YAN Yong-jie, LI Wei, GUO Xin-wen. Study on hydrogen bond type in coal[J]. J Fuel Chem Technol, 1998, 26(2):141-144. http://d.old.wanfangdata.com.cn/Periodical/jzsfgdzkxxxb201103010
    [34] SOLOMON P R, HAMBLEN D G, CARANGELO R M. Applications of fourier transform IR spectroscopy in fuel science[C]//Coal and Coal Products: Analytical characterization techniques. Washington: American Chemical Society, 1982. https://www.researchgate.net/publication/284815153_Applications_of_Fourier_Transform_IR_Spectroscopy_in_Fuel_Science
    [35] YVRVM Y, ALTUNTA Ç N. Air oxidation of Beypazari lignite at 50℃, 100℃and 150℃[J]. Fuel, 1998, 77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  27
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-09
  • 修回日期:  2018-10-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回