留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响

张小蕊 邹冲 赵俊学 马成 胡冰 刘诗薇 何江永

张小蕊, 邹冲, 赵俊学, 马成, 胡冰, 刘诗薇, 何江永. XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响[J]. 燃料化学学报(中英文), 2019, 47(11): 1288-1297.
引用本文: 张小蕊, 邹冲, 赵俊学, 马成, 胡冰, 刘诗薇, 何江永. XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响[J]. 燃料化学学报(中英文), 2019, 47(11): 1288-1297.
ZHANG Xiao-rui, ZOU Chong, ZHAO Jun-xue, MA Cheng, HU Bing, LIU Shi-wei, HE Jiang-yong. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1288-1297.
Citation: ZHANG Xiao-rui, ZOU Chong, ZHAO Jun-xue, MA Cheng, HU Bing, LIU Shi-wei, HE Jiang-yong. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1288-1297.

XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响

基金项目: 

国家自然科学基金 51374166

国家自然科学基金 51704224

陕西省重点研发计划项目 2017TSCXL-GY-04-01

陕西省重点研发计划项目 2015Ktzdsf01-04

陕西省高校科协青年人才托举计划 20190603

陕西省教育厅服务地方专项计划项目 17JF012

详细信息
  • 中图分类号: TQ530.2

Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods

Funds: 

National Natural Science Foundation of China 51374166

National Natural Science Foundation of China 51704224

Shaanxi Provincial Key Research and Development Program Funding Project 2017TSCXL-GY-04-01

Shaanxi Provincial Key Research and Development Program Funding Project 2015Ktzdsf01-04

Shaanxi Provincial Association of Science and Technology Youth Talents Lifting Plan 20190603

Shaanxi Provincial Department of Education Serves Local Special Projects 17JF012

More Information
  • 摘要: 采用XRD和Raman光谱分析方法研究了神木煤在热解主要温度区间(450-750℃)及在三种热解气氛(N2、含H2及含CO)下的化学结构演变规律,并比较了两种方法所获结构参数的相关性。结果表明,原煤在N2气氛下热解制备的半焦,其炭微晶尺寸在横向上不断增长,纵向上层面间距逐渐增大,堆垛高度在650℃左右剧烈转变;Raman参数AD1/AG增加,而AG/Aall降低,表明半焦有序性结构比例降低。热解气氛中的H2促进了炭微晶结构的纵向发展,提高了小分子基团的转化程度,使得半焦有序化程度升高。热解气氛中的CO对炭微晶结构参数影响小于H2气氛,但在700℃以下,CO因析炭作用产生的致密炭颗粒包裹于半焦表面,导致半焦炭有序化程度提高。半焦的LcAG/Aalld002AD1/AG之间存在一定相关性;LaAD1/AG呈较好的正相关性。
  • 图  1  热解实验装置示意图

    Figure  1  Pyrolysis experimental device diagram

    图  2  XRD光谱的002峰和100峰的拟合曲线示意图

    Figure  2  Schematic of curve-fitted XRD spectrum of 002 and 100 band

    图  3  半焦的拉曼光谱谱图及拟合曲线

    Figure  3  Raman spectrum and curves fitted of char

    图  4  N2半焦的XRD谱图和Raman参数

    Figure  4  XRD and Raman parameters of char-N2

    图  5  H2半焦的XRD谱图和Raman参数

    —■—: N2; —▲—: H2

    Figure  5  XRD and Raman parameters of char-H2

    图  6  热解过程中煤结构的示意图

    Figure  6  Schematic diagram of coal structure during pyrolysis

    图  7  CO半焦的XRD谱图和Raman参数

    —■—: N2; —▼—: CO

    Figure  7  XRD and Raman parameters of char-CO

    图  8  CO歧化反应的热力学计算

    Figure  8  Thermodynamic calculation of CO disproportionation reaction

    图  9  CO的歧化反应特征

    Figure  9  Characteristics of CO disproportionation reaction

    (a): in the blank experiment, the CO2 release curves were in pure N2, containing CO and containing H2; (b): SEM image of corundum surface after the blank experiment in CO-containing atmosphere

    图  10  Raman与XRD谱图之间的关系

    Figure  10  A relationship between Raman and XRD parameters

    (a): AD1/AG-d002; (b): AG/Aall-Lc; (c): AD1/AG-La

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of sample

    Sample Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Aad Vdaf FCad C H N O* S
    Raw coal 3.83 7.53 37.06 55.97 71.97 4.38 0.93 22.51 0.20
    N2-450 ℃ 0.73 12.30 17.78 69.95 85.18 3.65 0.58 10.43 0.15
    N2-550 ℃ 0.82 14.57 12.98 72.54 87.93 2.82 0.59 8.50 0.15
    N2-650 ℃ 1.31 10.41 7.86 80.42 90.00 1.97 0.39 7.49 0.14
    N2-750 ℃ 1.26 7.86 4.49 86.39 90.88 1.15 0.31 7.50 0.15
    H2-450 ℃ 1.07 10.38 14.60 73.95 77.12 2.71 0.49 19.52 0.15
    H2-550 ℃ 0.95 14.25 8.83 75.97 82.48 2.27 0.56 14.54 0.14
    H2-650 ℃ 1.01 13.96 3.92 81.11 79.86 1.23 0.62 18.13 0.15
    H2-750℃ 1.32 7.01 1.79 89.90 86.83 1.07 0.58 11.39 0.12
    CO-450 ℃ 0.69 6.36 22.04 70.92 73.45 3.65 0.53 22.20 0.16
    CO-550 ℃ 0.70 9.69 13.69 75.86 75.47 2.85 0.44 21.07 0.16
    CO-650 ℃ 0.86 9.28 8.26 81.64 88.03 2.01 0.36 9.44 0.15
    CO-750 ℃ 0.93 6.45 4.93 87.70 88.81 1.15 0.42 9.46 0.15
    *: by difference
    下载: 导出CSV

    表  2  半焦的拉曼拟合峰及其振动模式

    Table  2  Raman bands and vibration modes of char

    Band Raman shift δ/cm-1 Vibration mode
    D1 1350 disordered graphitic lattice (graphene layer edges, A1g-symmetry)
    D2 1620 disordered graphitic lattice (surface graphene layers, E2g-symmetry)
    D3 1530 amorphous carbon
    D4 1150 disordered graphitic lattice, polyenes, ionic impurities
    G 1580 ideal graphitic lattice (E2g-symmetry)
    下载: 导出CSV

    表  3  不同气氛下制备半焦的XRD参数

    Table  3  XRD parameters of char prepared under different atmospheres

    Temperature t/℃ Atmosphere 2θ(γ)/ (°) β(γ)/min 2θ(002)/ (°) β(002)/min 2θ(100)/ (°) β(100)/min d002/nm Lc/nm La/nm N
    450 N2 20.215 1.729 25.050 6.692 42.740 6.803 0.356 1.20 2.56 3.37
    H2 20.254 3.127 24.872 6.159 43.509 6.959 0.358 1.31 2.51 3.66
    CO 20.354 3.157 24.896 5.677 43.153 6.863 0.357 1.42 2.55 3.98
    550 N2 18.908 3.812 24.585 7.129 43.003 6.707 0.362 1.14 2.60 3.44
    H2 20.057 3.371 24.695 5.916 43.596 6.784 0.360 1.36 2.58 3.78
    CO 20.032 3.007 24.796 6.269 43.558 7.510 0.360 1.23 2.33 3.42
    650 N2 18.694 3.354 24.456 7.613 43.371 5.964 0.363 1.06 2.93 2.92
    H2 20.250 4.224 24.980 6.338 43.837 5.991 0.356 1.27 2.92 3.57
    CO 19.736 3.728 24.485 6.621 43.678 6.189 0.363 1.21 2.83 3.33
    750 N2 19.139 3.782 24.434 6.694 43.426 5.431 0.364 1.20 3.22 3.30
    H2 20.091 4.090 24.515 6.388 43.886 5.601 0.362 1.26 3.13 3.48
    CO 20.175 3.773 24.525 6.658 43.863 5.488 0.363 1.21 3.19 3.33
    下载: 导出CSV

    表  4  不同气氛下制备半焦的Raman参数

    Table  4  Raman parameters of char prepared under different atmospheres

    Temp. t/℃ Atmos- phere AD1/ Aall AD2/ Aall AD3/ Aall AD4/ Aall AG/ Aall AD1/ AG AR/ Aall A(D3+D4)/ AG XD1 XD2 XD3 XD4 XG
    450 N2 60.92 9.08 8.19 3.99 17.76 3.61 21.26 0.71 1360.53 1613.91 1562.08 1221.82 1589.06
    H2 67.04 6.54 8.51 0.95 16.96 4.04 16.00 0.59 1349.84 1601.98 1559.53 1185.44 1572.23
    CO 66.35 6.22 5.41 1.35 20.67 3.36 12.98 1.73 1344.38 1603.66 1549.09 1177.94 1574.33
    550 N2 62.98 9.59 6.36 5.00 16.06 3.98 20.96 0.73 1359.38 1611.36 1568.79 1209.14 1586.64
    H2 68.84 2.89 6.41 0.87 20.99 3.33 10.17 0.37 1345.83 1608.01 1558.71 1178.08 1579.77
    CO 66.29 4.70 5.39 0.72 22.90 2.94 10.81 1.74 1347.09 1602.23 1557.40 1180.21 1574.71
    650 N2 64.87 9.05 11.32 0.83 13.53 4.81 21.36 0.87 1346.63 1610.04 1534.52 1087.19 1582.18
    H2 61.56 8.10 5.80 3.34 22.31 2.78 16.13 0.35 1328.98 1602.11 1496.88 1184.38 1570.88
    CO 69.37 5.83 6.49 1.25 16.11 4.31 13.56 0.48 1338.91 1604.01 1551.83 1174.13 1574.31
    750 N2 65.22 8.16 11.80 0.63 14.19 4.65 20.59 0.89 1348.30 1612.91 1533.07 1120.00 1584.56
    H2 65.99 6.48 7.03 1.46 19.05 3.47 14.96 0.45 1330.42 1601.21 1512.95 1175.59 1572.54
    CO 65.88 6.13 7.10 1.46 19.43 3.42 14.69 0.44 1334.44 1602.60 1528.62 1176.30 1572.47
    XD1: highest X value of the D1 peak; XD2: highest X value of the D2 peak; XD3: highest X value of the D3 peak; XD4: highest X value of the D4 peak; XG: highest X value of the D1 peak
    下载: 导出CSV
  • [1] 高晋生.煤的热解、炼焦和煤焦油加工[M].北京:化学工业出版社, 2010.

    GAO Jin-sheng. Coal Pyrolysis, Coking and Coal Tar Processing[M]. Beijing:Chemical Industry Press, 2010.
    [2] 贺志宝.神府煤加氢热解过程研究[D].大连: 大连理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017701802.htm

    HE Zhi-bao. Hydropyrolysis of Shenfu coal[D]. Dalian: Dalian University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017701802.htm
    [3] 虞继舜.煤化工[M].北京:冶金工业出版社, 2000.

    YU Ji-shun. Coal Chemical Industry[M]. Beijing:Metallugical Industry Press, 2000.
    [4] ZHONG M, GAO S Q, ZHOU Q, YUE J R, MA F Y, XU G W. Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres[J]. Particuology, 2016, 25:59-67. doi: 10.1016/j.partic.2014.12.018
    [5] WANG Q H, ZHANG R, LUO Z Y, FANG M X, CEN K F. Effects of pyrolysis atmosphere and temperature on coal char characteristics and gasification reactivity[J]. Energy Technol, 2016, 4:543-550. doi: 10.1002/ente.201500366
    [6] 白宗庆, 陈皓侃, 李文, 李保庆.热重-质谱联用研究焦炭在甲烷气氛下的热行为[J].燃料化学学报, 2005, 33(4):426-430. doi: 10.3969/j.issn.0253-2409.2005.04.009

    BAI Zong-qing, CHEN Hao-kan, LI-Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005, 33(4):426-430. doi: 10.3969/j.issn.0253-2409.2005.04.009
    [7] ZHANG H Y, XIAO R, WANG D H, HE G Y, SHAO S S, ZHANG J B, ZHONG Z P. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres[J]. Bioresour Technol, 2011, 102(5):4258-4264. doi: 10.1016/j.biortech.2010.12.075
    [8] 胡冰, 邹冲, 赵俊学, 马成, 何江永, 李小明.冷却方式对低温热解半焦结构及性能的影响[J].煤炭转化, 2018, 41(1):13-18. doi: 10.3969/j.issn.1004-4248.2018.01.002

    HU Bing, ZOU Chong, ZHAO Jun-xue, MA Cheng, HE Jiang-yong, LI Xiao-ming. Effects of cooling methods on the structure and properties of low temperature pyrolytic semi-coke[J]. Coal Convers, 2018, 41(1):13-18. doi: 10.3969/j.issn.1004-4248.2018.01.002
    [9] 梁鼎成, 解强, 党钾涛, 杨明顺, 何璐, 东赫.不同煤阶煤中温热解半焦微观结构及形貌研究[J].中国矿业大学学报, 2016, 45(4):799-806. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201604020

    LIANG Ding-cheng, XIE Qing, DANG Jia-tao, YANG Ming-shun, HE Lu, DONG He. Microcrystalline structure and morphology of chars derived from medium-temperature pyrolysis of coals with different metamorphisms[J]. J China Univ Min Technol, 2016, 45(4):799-806. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201604020
    [10] 王琦.低阶褐煤热解过程的原位红外及拉曼光谱研究[D].大连: 大连理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017701811.htm

    WANG Qi. In-situ FT-IR and Raman spectroscopic studies on the pyrolysis of low-rank lignite[D]. Dalian: Dalian University of Techology, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017701811.htm
    [11] 孙加亮, 陈绪军, 王芳, 林雄超, 王永刚.氧气对胜利褐煤水蒸气化半焦结构及反应性的影响[J].燃料化学学报, 2015, 43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001

    SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effects of oxygen on the structure and reactivity of char during steam gasification of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001
    [12] 刘冬冬, 高继慧, 吴少华, 秦裕琨.热解过程煤焦微观结构变化的XRD和Raman表征[J].哈尔滨工业大学学报, 2016, 48(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201607006

    LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016, 48(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201607006
    [13] ZICKLER G A, SMARSLY B, GIERLINGER N, PETERLIK H, PARIS O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diraction and Raman spectroscopy[J]. Carbon, 2006, 44:3239-3246. doi: 10.1016/j.carbon.2006.06.029
    [14] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3):1126-1130. doi: 10.1063/1.1674108
    [15] YAMAUCHI S, KURIMOTO Y. Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar:Temperature dependence of Raman parameters[J]. Japan Wood Res Soc, 2003, 49:235-240. http://cn.bing.com/academic/profile?id=7405deb77d950e43d9c4f612b579c844&encoded=0&v=paper_preview&mkt=zh-cn
    [16] QIU H P, GUO Q G, SONG Y Z, ZHAI G T, SONG J R, LIU L. Study of the relationship between thermal conductivity and microcrystalline parameters of bulk graphite[J]. New Carbon Mater, 2002, 17(1):36-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxtcl200201009
    [17] 赵洪宇, 李玉环, 舒元锋, 宋强, 吕俊鑫, 王子民, 曾鸣, 舒新前. CaO对褐煤和无烟煤热解产物分布及煤焦结构的影响[J].煤炭科学技术, 2016, 44(3):177-183. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201603033

    ZHAO Hong-yu, LI Yu-huan, SHU Yuan-feng, SONG Qiang, LYU Jun-xin, WANG Zi-min, ZENG Ming, SHU Xin-qian. Effect of calcium oxide on pyrolysis products distribution and char structure of lignite and anthracite[J]. Coal Sci Technol, 2016, 44(3):177-183. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201603033
    [18] 尹艳山, 王泽忠, 田红, 张巍, 鄢晓忠, 陈冬林.热解温度对无烟煤焦微观结构和脱硝特性的影响[J].化学进展, 2015, 34(6):1636-1640. http://d.old.wanfangdata.com.cn/Periodical/hgjz201506022

    YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, YAN Xiao-zhong, CHEN Dong-lin. Effect of pyrolysis temperature on microstructure and de-NOx reactivity of Anthracite char[J]. Chem Ind Eng Prog, 2015, 34(6):1636-1640. http://d.old.wanfangdata.com.cn/Periodical/hgjz201506022
    [19] 张金刚, 孙志刚, 郭强, 王兴军, 于广锁, 刘海峰, 王辅臣.神府煤热解的结构变化及煤焦加氢反应性研究[J].燃料化学学报, 2017, 45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001

    ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. J Fuel Chem Technol, 2017, 45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001
    [20] 段春雷.低中变质程度煤的结构特征及热解过程中甲烷、氢气的生成机理[D].太原: 太原理工大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10112-2008017503.htm

    DUAN Chun-lei. Structural characteristics of low-middle rank coals and generation mechanisms of methane and hydrogen during pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10112-2008017503.htm
    [21] 程柱.煤热解过程多环芳烃生成规律研究[D].太原: 太原理工大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10112-2010143817.htm

    CHENG Zhu. Study on the emission characteristic of polycylic aromatic hydrocarbons from coal pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2010. http://cdmd.cnki.com.cn/article/cdmd-10112-2010143817.htm
    [22] KNIGHT D S, WHITE W B. Characterization of diamond films by Raman spectroscopy[J]. J Mater Res, 1989, 4(2):385-393. doi: 10.1557/JMR.1989.0385
    [23] CANCADO L G, TAKAI K, ENOKI T, ENDO M, KIM Y A, MIZUSAKI H, JORIO A, COELHO L, PANIAGO R, PIMENTA M A. General equation for the determination on the crystallite size La of nanographite by Raman spectroscopy[J]. Appl Phys Lett, 2006, 88(16):163106-163106-3. doi: 10.1063/1.2196057
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  79
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 修回日期:  2019-09-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回