留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Facile preparation of hierarchically porous IM-5 zeolite with enhanced catalytic performance in methane aromatization

LIU Heng ZHOU Chen ZHANG Yi-nan KAN Qiu-bin

刘恒, 周晨, 张轶楠, 阚秋斌. 多级孔IM-5分子筛的简易制备及其在甲烷芳构化中的催化性能[J]. 燃料化学学报(中英文), 2017, 45(9): 1074-1081.
引用本文: 刘恒, 周晨, 张轶楠, 阚秋斌. 多级孔IM-5分子筛的简易制备及其在甲烷芳构化中的催化性能[J]. 燃料化学学报(中英文), 2017, 45(9): 1074-1081.
LIU Heng, ZHOU Chen, ZHANG Yi-nan, KAN Qiu-bin. Facile preparation of hierarchically porous IM-5 zeolite with enhanced catalytic performance in methane aromatization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1074-1081.
Citation: LIU Heng, ZHOU Chen, ZHANG Yi-nan, KAN Qiu-bin. Facile preparation of hierarchically porous IM-5 zeolite with enhanced catalytic performance in methane aromatization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1074-1081.

多级孔IM-5分子筛的简易制备及其在甲烷芳构化中的催化性能

基金项目: 

Youth Fund of Changchun University of Science and Technology XJJLG-2015-12

详细信息
  • 中图分类号: O643

Facile preparation of hierarchically porous IM-5 zeolite with enhanced catalytic performance in methane aromatization

Funds: 

Youth Fund of Changchun University of Science and Technology XJJLG-2015-12

More Information
  • 摘要: 采用一步水热晶化法、不添加第二模板剂、仅通过控制合成条件,制备了具有多级孔道结构的IM-5-H分子筛。多级孔IM-5-H材料展现了与常规IM-5-C分子筛不同的形貌、结构和酸性质。由于IM-5-H分子筛载体介孔结构的促进作用,钼基Mo-IM-5-H催化剂在甲烷无氧芳构化反应中表现出较高的甲烷转化率(13.1%)、芳烃产率(7.5%)和稳定性。该研究为合成多级孔IM-5材料提供了一种简便的方法,同时扩展了微孔-介孔复合材料在甲烷芳构化反应中的应用。
    本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  XRD patterns of IM-5-H and IM-5-C samples

    Figure  2  SEM (a, b, c) and TEM (d, e, f) images of the IM-5-C (a, d) and IM-5-H (b, c, e, f) samples

    Figure  3  N2 adsorption-desorption isotherms and pore size distributions of the IM-5-H(d, e, f) and IM-5-C(a, b, c) samples

    Figure  4  NH3-TPD profiles of (a) H-IM-5-H, (b) Mo-IM-5-H, (c) H-IM-5-C, and (d) Mo-IM-5-C samples

    Figure  5  FT-IR spectra of pyridine adsorption on (a) H-IM-5-C, (b) Mo-IM-5-C, (c) H-IM-5-H, and (d) Mo-IM-5-H

    Figure  6  Performance of Mo-IM-5-H (●) and Mo-IM-5-C (■) catalysts in methane non-oxidative aromatization

    reaction condition: 700℃, 1.01×105Pa, and GHSV = 1500 h-1

    Figure  7  Product selectivity for methane aromatization over Mo-IM-5-H and Mo-IM-5-C catalysts at 60 and 600min on stream

    Figure  8  TG curves of the spent Mo-IM-5-C and Mo-IM-5-H catalysts after methane aromatization tests

    Table  1  Surface areas (ABET), microporous surface areas (vmicro), microporous volumes (vmicro), total pore volumes (vtotal), micropore size (dmicro) and average pore size (daver) of the IM-5-C, Mo-IM-5-C, IM-5-H and Mo-IM-5-H samples

    SampleABET
    /(m2·g-1)
    Amicro
    /(m2·g-1)
    vmicro
    /(cm3·g-1)
    vtotal
    /(cm3·g-1)
    dmicro
    /nm
    daver
    /nm
    IM-5-C3593180.160.200.482.1
    Mo-IM-5-C3022740.140.170.451.9
    IM-5-H3933060.150.290.475.2
    Mo-IM-5-H3212650.130.240.454.7
    note: dmicro is calculated from Horvath-Kawazoe report, whereas daver from BJH method based on the desorption branch
    下载: 导出CSV

    Table  2  Acidity capacities of H-IM-5-C, Mo-IM-5-C, H-IM-5-H and Mo-IM-5-H

    SamplePeak area /(a.u.)
    LMH
    H-IM-5-C466-570
    Mo-IM-5-C408245303
    H-IM-5-H395-397
    Mo-IM-5-H352191184
    下载: 导出CSV

    Table  3  Quantitative results from pyridine-FT-IR spectra of H-IM-5-C, Mo-IM-5-C, H-IM-5-H and Mo-IM-5-H samples

    SampleAcidity quantity /(mmol·g-1)
    Brönsted acid sitesLewis acid sites
    H-IM-5-C0.27230.2552
    Mo-IM-5-C0.21540.2179
    H-IM-5-H0.19170.2316
    Mo-IM-5-H0.12820.1975
    下载: 导出CSV
  • [1] MA S, GUO X, ZHAO L, SCOTTC S, BAO X. Recent progress in methane dehydroaromatization:From laboratory curiosities to promising technology[J]. J Energy Chem, 2013, 22(1):1-20. doi: 10.1016/S2095-4956(13)60001-7
    [2] MAMONOV N A, FADEEVA E V, GRIGORIEV D A, MIKHAILOV M N, KUSTOV L M, ALKHIMOV S A. Metal-zeolite catalysts for dehydroaromatization of methane[J]. Russ Chem Rev, 2013, 82(6):567-585. doi: 10.1070/RC2013v082n06ABEH004346
    [3] WANG L, TAO L, XIE M, XU G, HUANG J, XU Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993, 21(1):35-41. doi: 10.1007/BF00767368
    [4] LIU H, WU S, GUO Y, SHANG F, YU X, MA Y, XU C, GUAN J, KAN Q. Synthesis of Mo/IM-5 catalyst and its catalytic behavior in methane non-oxidative aromatization[J]. Fuel, 2011, 90:1515-1521. doi: 10.1016/j.fuel.2010.11.027
    [5] LIU H, YANG S, WU S, SHANG F, YU X, XU C, GUAN J, KAN Q. Synthesis of Mo/TNU-9(TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization[J]. Energy, 2011, 36(3):1582-1589. doi: 10.1016/j.energy.2010.12.073
    [6] LIU H, HU J, LI Z, WU S, LIU L, GUAN J, KAN Q. Synthesis of zeolite IM-5 under rotating and static conditions and the catalytic performance of Mo/H-IM-5 catalyst in methane non-oxidative aromatization[J]. Kinet Catal, 2013, 54(4):443-450. doi: 10.1134/S0023158413040083
    [7] LI B, LI S, LI N, CHEN H, ZHANG W, BAO X, LIN B. Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization[J]. Micropor Mesopor Mat, 2006, 88(1/3):244-253. http://www.sciencedirect.com/science/article/pii/S1387181105004567
    [8] HU J, WU S, MA Y, YANG X, LI Z, LIU H, HUO Q, GUAN J, KAN Q. Effect of the particle size of MoO3 on the catalytic activity of Mo/ZSM-5 in methane non-oxidative aromatization[J]. New J Chem, 2015, 39(7):5459-5469. doi: 10.1039/C5NJ00672D
    [9] WU P, KAN Q, WANG X, WANG D, XING H, YANG P, WU T. Acidity and catalytic properties for methane conversion of Mo/HZSM-5 catalyst modified by reacting with organometallic complex[J]. Appl Catal A, 2005, 282(1/2):39-44. http://www.sciencedirect.com/science/article/pii/S0926860X04009639
    [10] LIU B, ZHANG Y, LIU J, TIAN M, ZHANG F, AU C T, CHEUNG A S C. Characteristic and mechanism of methane dehydroaromatization over Zn-based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion[J]. J Phys Chem C, 2011, 115(34):16954-16962. doi: 10.1021/jp2027065
    [11] LUZGIN M V, GABRIENKO A A, ROGOV V A, TOKTAREV A V, Parmon V N, STEPANOV A G. The "alkyl" and "carbenium" pathways of methane activation on Ga-modified zeolite BEA:13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane[J]. J Phys Chem C, 2010, 114(49):21555-21561. doi: 10.1021/jp1078899
    [12] SU L, LIU L, ZHUANG J, WANG H, LI Y, SHEN W, XU Y, BAO X. Creating mesopores in ZSM-5 zeolite by alkali treatment:a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catal Lett, 2003, 91(3):155-167. doi: 10.1023/B%3ACATL.0000007149.48132.5a
    [13] LI Y, LIU D, LIU S, WANG W, XIE S, ZHU X, XU L. Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites[J]. J Nat Gas Chem, 2008, 17(1):69-74. doi: 10.1016/S1003-9953(08)60028-6
    [14] SERRANO D P, GARCÍAR A, VICNETE G, LINARES M, PROCHÁZKOVÁ D, ČJ. Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units[J]. J Catal, 2011, 279(2):366-380. doi: 10.1016/j.jcat.2011.02.007
    [15] ZHU H, LIU Z, WANG Y, KONG D, YUAN X, XIE Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal[J].Chem Mater, 2008, 20(3):1134-1139. doi: 10.1021/cm071385o
    [16] CHOI M, CHO H S, SRIVASTAVA R, VENKATESAN C, CHOI D, RYOO R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Mater, 2006, 5(9):718-723. doi: 10.1038/nmat1705
    [17] CHEN L, LI X, ROOKE J C, ZHANG Y, YANG X, TANG Y, XIAO F, SU B. Hierarchically structured zeolites:synthesis, mass transport properties and applications[J]. J Mater Chem, 2012, 22(34):17381-17403. doi: 10.1039/c2jm31957h
    [18] CHU N, YANG J, LI C, CUI J, ZHAO Q, YIN X, LU J, WANG J. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization[J]. Micropor Mesopor Mat 2009, 118(1):169-175. http://www.sciencedirect.com/science/article/pii/S1387181108004277
    [19] CHU N, WANG J, ZHANG Y, YANG J, LU J, YIN D. Nestlike hollow hierarchical MCM-22 microspheres:synthesis and exceptional catalytic properties[J]. Chem Mater, 2010, 22(9):2757-2763. doi: 10.1021/cm903645p
    [20] XU C, LIU H, JIA M, GUAN J, WU S, WU T, KAN Q. Methane non-oxidative aromatization on Mo/ZSM-5:Effect of adding triethoxyphenylsilanes into the synthesis system of ZSM-5[J]. Appl Surf Sci, 2011, 257(7):2448-2454. doi: 10.1016/j.apsusc.2010.10.001
    [21] LIU H, YANG S, HU J, SHANG F, LI Z, XU C, GUAN J, KAN Q. A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization[J]. Fuel Process Technol, 2012, 96:195-202. doi: 10.1016/j.fuproc.2011.12.034
    [22] HU J, WU S, LIU H, DING H, LI Z, GUAN J, KAN Q. Effect of mesopore structure of TNU-9 on methane dehydroaromatization[J]. RSC Adv, 2014, 4(51):26577-26584. doi: 10.1039/c4ra03945a
    [23] FANG Y, HU H, CHEN G. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template[J]. Chem Mater, 2008, 20(5):1670-1672. doi: 10.1021/cm703265q
    [24] CHU N, YANG J, WANG J, YU S, LU J, ZHANG Y, YIN D. A feasible way to enhance effectively the catalytic performance of methane dehydroaromatization[J]. Catal Commun, 2010, 11(6):513-517. doi: 10.1016/j.catcom.2009.12.004
    [25] CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Cheminform, 2005, 82(1/2):1-78. http://www.sciencedirect.com/science/article/pii/S1387181105000934
    [26] WU J, WANG B, LI N, XIANG S. Effect of aging method on the synthesis of MCM-22 zeolite in fluoride system[J]. Chin J Catal, 2006, 27(7):585-590. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHUA200607013.htm
    [27] ALFARO S, RODRIGUEZ C, VALENZUELA M A, BOSCH P. Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template[J]. Mater Lett, 2007, 61(23/24):4655-4658. http://www.sciencedirect.com/science/article/pii/S0167577X07002339
    [28] YANG X, TIAN G, CHEN L, LI Y, ROOKE J C, WEI Y, LIU Z, DENG Z, VAN T G, SU B. Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance[J]. Chemistry, 2011, 17(52):14987-14995. doi: 10.1002/chem.201101594
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  29
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-07-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回