留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温等离子体制备低碳醇合成用KNiMo基催化剂及其结构性能表征

李莹 赵璐 刘晓展 曾春新 房克功

李莹, 赵璐, 刘晓展, 曾春新, 房克功. 低温等离子体制备低碳醇合成用KNiMo基催化剂及其结构性能表征[J]. 燃料化学学报(中英文), 2019, 47(5): 513-522.
引用本文: 李莹, 赵璐, 刘晓展, 曾春新, 房克功. 低温等离子体制备低碳醇合成用KNiMo基催化剂及其结构性能表征[J]. 燃料化学学报(中英文), 2019, 47(5): 513-522.
LI Ying, ZHAO Lu, LIU Xiao-zhan, ZENG Chun-xin, FANG Ke-gong. Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 513-522.
Citation: LI Ying, ZHAO Lu, LIU Xiao-zhan, ZENG Chun-xin, FANG Ke-gong. Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 513-522.

低温等离子体制备低碳醇合成用KNiMo基催化剂及其结构性能表征

基金项目: 

国家重点研发计划 2018YFB0604700

国家自然科学基金 21603255

国家自然科学基金 21473230

山西省应用基础研究计划基金 201601D021052

山西省应用基础研究计划基金 201701D221054

详细信息
  • 中图分类号: O643

Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas

Funds: 

the National Key R&D Program of China 2018YFB0604700

National Natural Science Foundation of China 21603255

National Natural Science Foundation of China 21473230

Natural Science Foundation of Shanxi 201601D021052

Natural Science Foundation of Shanxi 201701D221054

More Information
  • 摘要: 采用低温等离子体法在温和条件下制备了低碳醇合成(HAS)用的高性能KNiMo基催化剂,利用XRD、氮吸附、TEM、H2-TPD、CO-TPD和原位CO吸附DRIFTS等技术对其进行了表征。结果表明,与传统的热法制备相比,低温等离子体法不仅缩短了制备时间,而且得到的KNiMo基催化剂层数少、粒径小、分散度高,有利于形成更薄和更短的片层,并暴露大量位于边、角位的催化活性位,促进CO转化和醇的形成,表现出优异的低碳醇合成催化性能。其中,采用低温等离子体直接制备的KNiMo-DPS催化剂,在5 MPa、350℃、空速为5000 h-1的反应条件下,CO转化率达到32.3%,总醇选择性为75.1%,总醇中C2+醇的选择性为65.2%。
  • 图  1  (a) 硫化用介质阻挡放电(DBD)等离子体反应器结构示意和(b) DBD反应器放电时床层温度分布

    Figure  1  (a) Configuration of the dielectric barrier discharge (DBD) plasma reactor; (b) Temperature distribution across the reaction bed under actual reaction conditions in plasma synthesis

    图  2  不同方法合成的KNiMo基催化剂的XRD谱图

    Figure  2  XRD patterns of the KNiMo-based catalysts synthesized by different methods

    图  3  不同方法合成的KNiMo基催化剂的TEM照片

    Figure  3  TEM images from KNiMo-CTS (a), KNiMo-CPS (b), KNiMo-DTS (c) and KNiMo-DPS (d)

    图  4  KNiMo-DPS催化剂的HAADF-STEM-EDS照片

    Figure  4  HAADF-STEM-EDS photographs of the KNiMo-DPS catalyst

    图  5  不同方法所制备KNiMo基催化剂的H2-TPD谱图

    Figure  5  H2-TPD profiles of the KNiMo-based catalysts synthesized by different methods

    图  6  不同方法所合成KNiMo基催化剂的CO-TPD谱图

    Figure  6  CO-TPD profiles of the KNiMo-based catalysts synthesized by different methods

    图  7  KNiMo-DPS催化剂的原位CO吸附DRIFTS谱图

    Figure  7  In-situ DRIFTS spectra of CO adsorption over the KNiMo-DPS catalyst

    图  8  KNiMo-DPS催化剂的稳定性

    Figure  8  Catalytic performance of KNiMo-DPS with the time on stream

    图  9  KNiMo-DPS催化剂(a)和KNiMo-CTS催化剂(b)反应前后的XRD谱图

    Figure  9  XRD patterns of the KNiMo-DPS (a) and KNiMo-CTS (b) catalysts, a comparison between the fresh ones and spent one after reaction tests

    表  1  不同方法合成的KNiMo基催化剂的物化性质

    Table  1  Physico-chemical characteristics of the KNiMo-based catalysts prepared by different methods

    Catalyst Surface area
    A/(m2·g-1)
    Particle size
    d/nm
    CO adsorption amount
    /(μmol·g-1)
    H2 adsorption amount
    /(μmol·g-1)
    KNiMo-CTS 23 35.8 42 28
    KNiMo-CPS 42 8.7 63 40
    KNiMo-DTS 34 29.6 58 32
    KNiMo-DPS 51 7.1 75 49
    下载: 导出CSV

    表  2  不同合成方法制备KNiMo基催化剂的HAS催化反应性能a

    Table  2  Catalytic performance of the KNiMo-based catalysts synthesized by different methods toward HAS a

    Catalyst CO
    conversion x/%
    ROH STY/
    (g·mL-1·h-1)
    Product selectivity w/%b Alcohol distribution w/%
    ROHc CHnd MeOH C2+OHe
    KNiMo-CTS 19.8 0.06 61.4 38.6 44.7 55.3
    KNiMo-CPS 28.4 0.11 70.3 29.7 37.0 63.0
    KNiMo-DTS 21.7 0.08 64.2 35.8 43.1 56.9
    KNiMo-DPS 32.3 0.13 75.1 24.9 34.8 65.2
    note: reactions were carried out at 350 ℃, 5.0 MPa, GHSV = 5000 h-1, H2/CO = 2. ROH means total alcohols and CHn is total hydrocarbons. STY is space-time yield and the product selectivity is CO2 free-based. Alcohols with carbon number of 2-5 (mainly ethanol, 1-propanol, 1-butanol, 1-pentanol and 2-propanol) were obtained in the product
    下载: 导出CSV
  • [1] AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [2] 士丽敏, 储伟, 刘增超.合成气制低碳醇用催化剂的研究进展[J].化工进展, 2011, 30(1):162-166. http://d.old.wanfangdata.com.cn/Periodical/hgjz201101022

    SHI Li-min, CHU Wei, LIU Zeng-chao. Research progress of catalysts for higher-alcohol synthesis from syngas[J]. Chem Ind Eng Prog, 2011, 30(1):162-166. http://d.old.wanfangdata.com.cn/Periodical/hgjz201101022
    [3] FANG K, LI D, LIN M, XIANG M, WEI W, SUN Y H. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today, 2009, 147(2):133-138. doi: 10.1016/j.cattod.2009.01.038
    [4] CHEN W, DING Y, XUE F, SONG X, NING L. Highly efficient β-SiC-supported 0.5% Rh-based catalyst for CO hydrogenation to C2 oxygenates[J]. Catal Commun, 2016, 85:44-47. doi: 10.1016/j.catcom.2016.07.016
    [5] 韩通, 赵琳, 岳义智, 刘源.铑基催化剂用于低碳醇合成反应研究进展[J].化工进展, 2016, 35(4):1087-1093. http://d.old.wanfangdata.com.cn/Periodical/hgjz201604019

    HAN Tong, ZHAO Lin, YUE Yi-zhi, LIU Yuan. Progress on the rhodium-based catalysts for the synthesis of higher alcohol[J]. Chem Ind Eng Prog, 2016, 35(4):1087-1093. http://d.old.wanfangdata.com.cn/Periodical/hgjz201604019
    [6] SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol, 2018, 8(15):3936-3947. doi: 10.1039/C8CY01074A
    [7] 士丽敏, 储伟, 邓思玉. La促进CuCo催化剂上合成气转化制低碳醇的研究[J].燃料化学学报, 2012, 40(4):436-440. doi: 10.3969/j.issn.0253-2409.2012.04.009

    SHI Li-min, CHU Wei, DENG Si-yu. Studies on higher alcohols from syngas over the La promoted CuCo catalysts[J]. J Fuel Chem Technol, 2012, 40(4):436-440. doi: 10.3969/j.issn.0253-2409.2012.04.009
    [8] 潘东明, 刘贵龙, 刘源. Co-Cu/ZrO2-La2O3催化剂用于合成气制低碳醇的研究[J].化学工业与工程, 2015, 32(4):1-6. doi: 10.3969/j.issn.1006-7906.2015.04.001

    PAN Dong-ming, LIU Gui-long, LIU Yuan. Studies on higher alcohols from syngas over the Co-Cu/ZrO2-La2O3 catalysts[J]. Chem Eng Technol, 2015, 32(4):1-6. doi: 10.3969/j.issn.1006-7906.2015.04.001
    [9] ZHAO L, DUAN J, ZHANG Q, LI Y, FANG K. Preparation, structural characteristics, and catalytic performance of Cu-Co alloy supported on Mn-Al oxide for higher alcohol synthesis via syngas[J]. Ind Eng Chem Res, 2018, 57(44):14957-14966. doi: 10.1021/acs.iecr.8b03304
    [10] 魏珺谊, 高志华, 黄伟, 艾培培, 闫飞飞, 游向轩.介孔碳有序度对其负载的CuCoCe催化剂催化合成气制低碳醇性能的影响[J].高等学校化学学报, 2018, 39(8):1741-1749. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201808018

    WEI Jun-yi, GAO Zhi-hua, HUANG Wei, AI Pei-pei, YAN Fei-fei, YOU Xiang-xuan. Effect of structural ordering on the performance of mesoporous carbon supported CuCoCe catalyst in the synthesis of higher alcohols from syngas[J]. Chem J Chin Univ, 2018, 39(8):1741-1749. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201808018
    [11] LIAKAKOU E T, ISAACS M A, WILSON K, LEE A F, HERACLEOUS E. On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts[J]. Catal Sci Technol, 2017, 7(4):988-999. doi: 10.1039/C7CY00018A
    [12] 程淑艳, 寇佳伟, 高志华, 黄伟. CuZnAl/碳纤维复合材料催化合成气制备低碳醇[J].无机化学学报, 2017, 33(12):2233-2240. doi: 10.11862/CJIC.2017.268

    CHENG Shu-yan, KOU Jia-wei, GAO Zhi-hua, HUANG Wei. Catalytic synthesis of higher alcohols form syngas over composite material of CuZnAl/carbon fibers[J]. Chin J Inorg Chem, 2017, 33(12):2233-2240. doi: 10.11862/CJIC.2017.268
    [13] ZHANG F, LI Y, GAO S, FANG H, LIANG X, YUAN Y. Synthesis of higher alcohols by CO hydrogenation on a K-promoted Ni-Mo catalyst derived from Ni-Mo phyllosilicate[J]. Catal Sci Technol, 2018, 8(16):4219-4228. doi: 10.1039/C8CY01095A
    [14] 皮金林, 张成芳.硫化钼系催化剂上低碳醇的分布规律[J].燃料化学学报, 1993, 21(1):96-101. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199301013.htm

    PI Jin-lin, ZHANG Cheng-fang. Distribution of mixed alcohols in products synthesized over molybdenum sulfide catalysts[J]. J Fuel Chem Technol, 1993, 21(1):96-101. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199301013.htm
    [15] LUAN X, YONG J, DAI X, ZHANG X, QIAN H, YANG Y, ZHAO H, PENG W, HUANG X. Tungsten-doped molybdenum sulfide with dominant double-layer structure on mixed MgAl oxide for higher alcohol synthesis in CO hydrogenation[J]. Ind Eng Chem Res, 2018, 57(31):10170-10179. doi: 10.1021/acs.iecr.8b01378
    [16] LI H, ZHANG W, WANG Y, SHUI M, SUN S, BAO J, GAO C. Nanosheet-structured K-Co-MoS2 catalyst for the higher alcohol synthesis from syngas:Synthesis and activation[J]. J Energy Chem, 2019, 30:57-62. doi: 10.1016/j.jechem.2018.03.019
    [17] WANG N, LI J, LIU X, HU R, ZHANG Y, SU H, GU X. Remarkable enhancement to the catalytic performance of molybdenum sulfide catalysts via in situ decomposition method for higher alcohols synthesis from syngas[J]. RSC Adv, 2016, 6(113):112356-112362. doi: 10.1039/C6RA24406H
    [18] SANTOS V P, LINDEN B V D, CHOJECKI A, BUDRONI G, CORTHALS S, SHIBATA H, MEIMA G R, KAPTEIJN F, MAKKEE M, GASCON J. Mechanistic insight into the synthesis of higher alcohols from syngas:The role of K promotion on MoS2 catalysts[J]. ACS Catal, 2013, 3(7):1634-1637. doi: 10.1021/cs4003518
    [19] LUK H T, FORSTER T, MONDELLI C, SIOL S, CURULLA-FERRE D, STEWART J A, PEREZ-RAMIREZ J. Carbon nanofibres-supported KCoMo catalysts for syngas conversion into higher alcohols[J]. Catal Sci Technol, 2018, 8(1):187-200. doi: 10.1039/C7CY01908D
    [20] YONG J, LUAN X, DAI X, ZHANG X, QIAO H, YANG Y, HUANG X. Tuning the metal-support interaction in supported K-promoted NiMo catalysts for enhanced selectivity and productivity towards higher alcohols in CO hydrogenation[J]. Catal Sci Technol, 2017, 7(18):4206-4215. doi: 10.1039/C7CY01295K
    [21] JALOWIECKI L, GRIMBLOT J, BONNELLE J P. Quantitative detection of reactive hydrogen on MoS2/γ-Al2O3 and on γ-Al2O3[J]. J Catal, 1990, 126(1):101-108.
    [22] OKAMOTOY, ISHIHARAS, KAWANOM, SATOH M, KUBOTAT. PreparationofCo-Mo/Al2O3 model sulfide catalysts for hydrodesulfurization and their application to the study of the effects of catalyst preparation[J]. J Catal, 2003, 217(1):12-22. https://www.sciencedirect.com/science/article/pii/S0021951703000290
    [23] PONEC V. Active centres for synthesis gas reactions[J]. Catal Today, 1992, 12(2/3):227-254. https://www.sciencedirect.com/science/article/pii/092058619285043L
    [24] ZHAO L, WANG Y, SUN Z, WANG A, LI X, SONG C, HU Y. Synthesis of highly dispersed metal sulfide catalysts via low temperature sulfidation in dielectric barrier discharge plasma[J]. Green Chem, 2014, 16(5):2619-2626. doi: 10.1039/C3GC42313A
    [25] 徐慧远, 储伟, 士丽敏, 张辉, 邓思玉.射频等离子体对合成低碳醇用CuCoAl催化剂的改性作用[J].燃料化学学报, 2009, 37(2):212-216. doi: 10.3969/j.issn.0253-2409.2009.02.016

    XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohol synthesis[J]. J Fuel Chem Technol, 2009, 37(2):212-216. doi: 10.3969/j.issn.0253-2409.2009.02.016
    [26] LIU C J, VISSOKOV G P, JANG B W L. Catalyst preparation using plasma technologies[J]. Catal Today, 2002, 72(3):173-184. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027082709/
    [27] JIANG Q, ZHANG H, WANG S. Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn2O4 with superior performance for lithium-ion batteries[J]. Green Chem, 2016, 18(3):662-666. doi: 10.1039/C5GC01563D
    [28] LI Y, JANG B W L. Selective hydrogenation of acetylene over Pd/Al2O3 catalysts:Effect of non-thermal RF plasma preparation methodologies[J]. Top Catal, 2017, 60(12/14):997-1008. doi: 10.1007%2Fs11244-017-0765-5
    [29] 张旭, 孙文晶, 储伟.等离子体技术对CO2甲烷化用Ni/SiO2催化剂的改性作用[J].燃料化学学报, 2013, 41(1):96-101. doi: 10.3969/j.issn.0253-2409.2013.01.016

    ZHANG Xu, SUN Wen-jing, CHU Wei. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation[J]. J Fuel Chem Technol, 2013, 41(1):96-101. doi: 10.3969/j.issn.0253-2409.2013.01.016
    [30] TAN Y, LIU H, LIU X Y, WANG A, LIU C J, ZHANG T. Effective removal of the protective ligands from Au nanoclusters by ambient pressure nonthermal plasma treatment for CO oxidation[J]. Chin J Catal, 2018, 39(5):929-936. doi: 10.1016/S1872-2067(18)63018-9
    [31] WANG N, SHEN K, YU X, QIAN W, CHU W. Preparation and characterization of a plasma treated NiMgSBA-15 catalyst for methane reforming with CO2 to produce syngas[J]. Catal Sci Technol, 2013, 3(9):2278-2287. doi: 10.1039/c3cy00299c
    [32] ZAHO L, LI W, ZHOU J, MU X, FANG K. One-step synthesis of Cu-Co alloy/Mn2O3-Al2O3 composites and their application in higher alcohol synthesis from syngas[J]. Int J Hydrogen Energy, 2017, 42(27):17414-17424. doi: 10.1016/j.ijhydene.2017.03.143
    [33] ZHAO L, LI Y, LIU X, FANG K. Low-temperature synthesis of high-performance nano-MoS2-based catalyst via non-thermal plasma for higher alcohol synthesis from syngas[J]. Catal Today, 2019, https://doi.org/10.1016/j.cattod.2019.01.069. doi: 10.1016/j.cattod.2019.01.069
    [34] ZHAO L, MU X, LIU T, FANG K. Bimetallic Ni-Co catalysts supported on Mn-Al oxide for selective catalytic CO hydrogenation to higher alcohols[J]. Catal Sci Technol, 2018, 8(8):2066-2076. doi: 10.1039/C7CY02555F
    [35] ZHAO L, MU X, YU M, FANG K. A novel catalyst for higher alcohol synthesis from syngas:Co-Zn supported on Mn-Al oxide[J]. Fuel Proc Technol, 2018, 177:16-29. doi: 10.1016/j.fuproc.2018.04.006
    [36] DAI X, LI Z, DU K, SUN H, YANG Y, ZHANG X, MA X, WANG J. Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction[J]. Electrochim Acta, 2015, 171:72-80. doi: 10.1016/j.electacta.2015.05.017
    [37] YANG D, FRINDT R F. Powder x-ray diffraction of turbostratically stacked layer systems[J]. J Mater Res, 1996, 11(7):1733-1738. doi: 10.1557/JMR.1996.0217
    [38] LACROIX M, DUMONTEILC, BREYSSE M, KASZTELAN S. Hydrogen activation on alumina supported MoS2 based catalysts:Role of the promoter[J]. J Catal, 1999, 185(1):219-222. https://www.sciencedirect.com/science/article/pii/S0021951799925058
    [39] PARK T Y, NAM I S, KIM Y G. Kinetic analysis of mixed alcohol synthesis from syngas over K/MoS2 catalyst[J]. Ind Eng Chem Res, 1997, 36(12):5246-5257. doi: 10.1021/ie9605701
    [40] ZOU Z Q, MENG M, ZHA Y Q. The effect of dopant Cu, Fe, Ni or La on the structures and properties of mesoporous Co-Ce-O compound catalysts[J]. J Alloys Comp, 2009, 470(1):96-106. http://www.sciencedirect.com/science/article/pii/S0925838808004507
    [41] LARRUBIA VARGAS M A, BUSCA G, COSTANTINO U, MARMOTTINI F, MONTANARI T, PATRONO P, PINZARI F, RAMIS G. An IR study of methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts[J]. J Mol Catal A, 2007, 266(1/2):188-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dba71d10507cff856361d11b3972eb2
    [42] YANG X, WEI Y, SU Y, ZHOU L. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010, 91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032
    [43] SURISETTY V R, TAVASOLI A, DALAI A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Appl Catal A:Gen, 2009, 365(2):243-251. doi: 10.1016/j.apcata.2009.06.017
    [44] WOO H C, PARK K Y, KIM Y G, NAMAU I S, SHIKCHUNG J, LEE J S. Mixed alcohol synthesis from carbon monoxide and dihydrogen over potassium-promoted molybdenum carbide catalysts[J]. Appl Catal A:Gen, 1991, 75(1):267-280. doi: 10.1016/S0166-9834(00)83136-X
    [45] SURISETTY V R, ESWARAMOORTHI I, DALAI A K. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group Ⅷ metals[J]. Fuel, 2012, 96(7):77-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=375d21e205d1da81ee340d28fc184b08
    [46] TOYODA T, MINAMI T, QIAN E W. Mixed alcohol synthesis over sulfided molybdenum-based catalysts[J]. Energy Fuels, 2013, 27(7):3769-3777. doi: 10.1021/ef400262a
    [47] PARIS R S, MONTES V, BOUTONNET M, JARAS S. Higher alcohol synthesis over nickel-modified alkali-doped molybdenum sulfide catalysts prepared by conventional coprecipitation and coprecipitation in microemulsions[J]. Catal Today, 2015, 258:294-303. doi: 10.1016/j.cattod.2014.12.003
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  54
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08
  • 修回日期:  2019-02-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-05-10

目录

    /

    返回文章
    返回