留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以椰壳生物质炭为燃料的直接炭固体氧化物燃料电池

丘倩媛 陈倩阳 刘志军 刘江

丘倩媛, 陈倩阳, 刘志军, 刘江. 以椰壳生物质炭为燃料的直接炭固体氧化物燃料电池[J]. 燃料化学学报(中英文), 2019, 47(3): 352-360.
引用本文: 丘倩媛, 陈倩阳, 刘志军, 刘江. 以椰壳生物质炭为燃料的直接炭固体氧化物燃料电池[J]. 燃料化学学报(中英文), 2019, 47(3): 352-360.
QIU Qian-yuan, CHEN Qian-yang, LIU Zhi-jun, LIU Jiang. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 352-360.
Citation: QIU Qian-yuan, CHEN Qian-yang, LIU Zhi-jun, LIU Jiang. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 352-360.

以椰壳生物质炭为燃料的直接炭固体氧化物燃料电池

基金项目: 

国家自然科学基金 91745203

国家自然科学基金 U1601207

广东省公益与能力建设基金 2014A010106008

广东省创新创业研究团队项目 2014ZT05N200

详细信息
  • 中图分类号: O646

Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell

Funds: 

The project was supported by the National Natural Science Foundation of China 91745203

The project was supported by the National Natural Science Foundation of China U1601207

Special Funds of Guangdong Province Public Research and Ability Construction 2014A010106008

Guangdong Innovative and Entrepreneurial Research Team Program 2014ZT05N200

More Information
  • 摘要: 通过热裂解制得椰壳炭,表征了其结构和组成,并将其用于电解质为钇稳定化氧化锆(YSZ)、电极材料为银和钆掺杂氧化铈(Ag-GDC)的固体氧化物燃料电池(SOFC)的燃料,对所构成的直接炭固体氧化物燃料电池(DC-SOFC)的性能进行了测试研究。结果表明,所制得的椰壳炭颗粒粒径在微米级别,具有介孔结构,而且椰壳炭中含有K、Ca等元素,可用作Boudouard反应催化剂。当使用椰壳炭作为DC-SOFC燃料时,在800 ℃下电池最大功率密度为255 mW/cm2;负载Fe催化剂后,最大功率密度提升为274 mW/cm2。以0.5 A/cm2的恒电流放电,0.5 g负载Fe椰壳炭燃料电池能够连续工作17.6 h,燃料利用率为39%,表明椰壳炭作为DC-SOFC燃料具有优异的性能和潜力。
  • 图  1  空气气氛下椰壳炭的TG曲线

    Figure  1  TG curve of coconut char under air atmosphere

    图  2  不同放大倍数下椰壳炭的SEM照片

    Figure  2  SEM images of the coconut char with different magnifications

    (a): 600×; (b): 5000×; (c): 50000×; (d): EDS analysis

    图  3  椰壳炭的(a)XRD谱图和(b) Raman谱图

    Figure  3  XRD patterns (a) and Raman spectra (b) of the coconut char curves a and b are for the Fe-loaded coconut char and pure coconut char, respectively

    图  4  SOFC单电池横截面的SEM照片

    Figure  4  SEM image of the as-prepared SOFC

    图  5  不同温度下以H2为燃料的SOFC (a)性能输出曲线和(b)阻抗谱图

    Figure  5  Output performances (a) and impedance spectra (b) of the SOFC operated with humidified H2 as fuel and ambient air as oxidant at different temperatures

    图  6  以纯活性炭、椰壳炭和负载Fe的活性炭和椰壳炭为燃料的DC-SOFC在800 ℃时的性能输出曲线(a)和阻抗谱图(b)

    Figure  6  Output performances (a) and impedance spectra (b) of the DC-SOFCs operated with different fuels at 800 ℃

    图  7  分别以0.5 g纯活性炭、纯椰壳炭和负载Fe的活性炭和椰壳炭为燃料,DC-SOFC在800 ℃下以0.5 A/cm2的恒电流放电的放电曲线

    Figure  7  Voltage vs. time curves of DC-SOFCs operated with pure and Fe-loaded active carbon and coconut char as fuel, measured at a constant current of 0.5 A/cm2 at 800 ℃

    图  8  放大倍数为5000倍下,负载Fe椰壳炭放电测试前(a)后(b)的SEM照片和负载Fe活性炭放电测试前(c)后(d)的SEM照片

    Figure  8  With a magnification of 5000×, the SEM images of the Fe-loaded coconut char before (a) and after (b) discharging test, and the SEM images of the Fe-loaded active carbon before (c) and after (d) discharging test

  • [1] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, JR F W, HALLETT J P, LEAK D J, LIOTTA C L. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760):484-489. doi: 10.1126/science.1114736
    [2] CHEN J, LI C, RISTOVSKI Z, MILIC A, GU Y, ISLAM M S, WANG S, HAO J, ZHANG H, HE C, GUO H, FU H, MILJEVIC B, MORAWSKA L, THAI P, LAM Y F, PEREIRA G, DING A, HUANG X, DUMKA U C. A review of biomass burning:Emissions and impacts on air quality, health and climate in China[J]. Sci Total Environ, 2017, 579:1000-1034. doi: 10.1016/j.scitotenv.2016.11.025
    [3] 潘根兴, 林振衡, 李恋卿, 张阿凤, 郑金伟, 张旭辉.试论我国农业和农村有机废弃物生物质碳产业化[J].中国农业科技导报, 2011, 13(1):75-82. doi: 10.3969/j.issn.1008-0864.2011.01.12

    PAN Gen-xing, LING Zhen-heng, LI Lian-qing, ZHANG A-feng, ZHENG Jin-wei, ZHANG Xu-hui. Prospective on biomass carbon industrialization of organic waste from agriculture and rural areas in China[J]. J Agri Sci Technol, 2011, 13(1):75-82. doi: 10.3969/j.issn.1008-0864.2011.01.12
    [4] 王媛媛, 秦海棠, 邓福明, 弓淑芳, 刘蕊, 郑小蔚, 范海阔.基于世界粮农组织2000-2016年统计数据库的全球椰子种植业发展概况及趋势研究[J].世界热带农业信息, 2018, 5: 1-13.

    WANG Yuan-yuan, QIN Hai-tang, DENG Fu-ming, GONG Shu-fang, ZHENG Xiao-wei, FAN Hai-kuo. Overview and trend study of global coconut plantation industry development based on faostat from 2000 to 2016[J]. World Trop Agri Inform, 2018, 5: 1-13.
    [5] 卢琨. 2015-2016年我国椰子产业的生产与贸易发展形势分析[J].世界热带农业信息, 2017, 9/10:1-6. http://d.old.wanfangdata.com.cn/Periodical/sjrdnyxx201709001

    LU Kun. Analysisi of production and trade development situation of chinese coconut industry[J]. World Trop Agri Inform, 2017, 9/10:1-6. http://d.old.wanfangdata.com.cn/Periodical/sjrdnyxx201709001
    [6] MINH N Q. Ceramic fuel cells[J]. J Am Ceram Soc, 1993, 76(3):563-588. doi: 10.1111/jace.1993.76.issue-3
    [7] HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, SOROUSH M, SHAMIRI A. Mathematical modeling of solid oxide fuel cells:A review[J]. Renewable Sustainable Energy Rev, 2011, 15(4):1893-1917. doi: 10.1016/j.rser.2010.12.011
    [8] JABOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2010, 22(3):660-674. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5e9b48fcec17359c7adcc7b8dba2452c
    [9] CAO D, SUN Y, WANG G. Direct carbon fuel cell:Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2):250-257. doi: 10.1016/j.jpowsour.2007.02.034
    [10] RADY A C, GIDDEY S, BADWAL S P S, LADEWIG B P, BHATTACHARYA S. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26(3):1471-1488. doi: 10.1021/ef201694y
    [11] GIDDEY S, BADWAL S P S, KULKARNI A, MUMMINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust, 2012, 38(3):360-399. doi: 10.1016/j.pecs.2012.01.003
    [12] 谢永敏, 李江霖, 侯金醒, 吴沛佳, 刘江, 刘庆生.固体氧化物燃料电池直接以焦炭为燃料的电性能[J].燃料化学学报, 2018, 46(10):1168-1174. doi: 10.3969/j.issn.0253-2409.2018.10.003

    XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in solid oxide fuel cell[J]. J Fuel Chem Technol, 2018, 46(10):1168-1174. doi: 10.3969/j.issn.0253-2409.2018.10.003
    [13] XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2013, 17(1):121-127. doi: 10.1007/s10008-012-1866-5
    [14] TANG Y, LIU J, SUI J. A novel direct carbon solid oxide fuel cell[J]. Ecs Trans, 2009, 25(2):1109-1114. http://d.old.wanfangdata.com.cn/Conference/8570060
    [15] TANG Y B, LIU J. Fueling solid oxide fuel cells with activated carbon[J]. Acta Phys Chim Sin, 2010, 26(5):1191-1194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001207847
    [16] BAI Y H, LIU Y, TANG Y B, XIE Y M, LIU J. Direct carbon solid oxide fuel cell-a potential high performance battery[J]. Int J Hydrogen Energy, 2011, 36(15):9189-9194. doi: 10.1016/j.ijhydene.2011.04.171
    [17] CAI W Z, LIU J, XIE Y, XIAO J, LIU M. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. J Solid State Electrochem, 2016, 20(8):2207-2216. doi: 10.1007/s10008-016-3216-5
    [18] LIU J, ZHOU M Y, ZHANG Y P, LIU Z J, XIE Y M, CAI W Z, YU F Y, ZHOU Q, WANG X Q, NI M, LIU M L. Electrochemical oxidation of carbon at high temperature:Principles and applications[J]. Energy Fuels, 2017, 32(4):4107-4117. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_91595f011edcc3ebcbbdfdebefb4b875
    [19] ZHOU Q, CAI W.Z, ZHANG Y P, LIU J, YUAN L L, YU F Y, WANG X Q, LIU M L. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass Bioenergy, 2016, 91:250-258. doi: 10.1016/j.biombioe.2016.05.036
    [20] DUDEK M, TOMCZYK P, SOCHA R, SKRZYPKIEWCZ M, JEWULSKI J. Biomass fuels for direct carbon fuel cell with solid oxide electrolyte[J]. Int J Electrochem Sci, 2013, 8:3229-3253. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=184723cb7a904adc3edc0b6048d27e39
    [21] CAI W, LIU J, LIU P, LIU Z, XU H, CHEN B, LI Y, ZHOU Q, LIU M, NI M. A direct carbon solid oxide fuel cell fueled with char from wheat straw[J]. Int Energy Res, 2018, 110. doi: 10.1002/er.3968/full
    [22] CAI W, ZHOU Q, XIE Y, LIU J, LONG G, CHENG S, LIU M. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Appl Energy, 2016, 179:1232-1241. doi: 10.1016/j.apenergy.2016.07.068
    [23] MUNNINGS C, KULKARNI A, GIDDEY S, BADWALAD S P S, Biomass to power conversion in a direct carbon fuel cell[J]. Int J Hydrogen Energy, 2014, 39(23):12377-12385. doi: 10.1016/j.ijhydene.2014.03.255
    [24] 余亮, 于方永, 苑莉莉, 蔡位子, 刘江, 杨成浩, 刘美林.银基陶瓷复合电极的电性能及其在固体氧化物燃料电池中的应用[J].物理化学学报, 2016, 32(2):503-509. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201602014

    YU Liang, YU Fang-yong, YUAN Li-li, CAI Wei-zi, LIU Jiang, YANG Cheng-hao, LIU Mei-lin. Electrical performance of Ag-based ceramic composite electrodeds and theire application in solid oxide fuel cells[J]. Acta Phys Chim Sin, 2016, 32(2):503-509. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201602014
    [25] KOPUSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014, 117:1181-1189. doi: 10.1016/j.fuel.2013.07.030
    [26] PERANDER M, DEMARTINI N, BRINK A, KRAMB J, KARLSTROM O, HEMMING J, MOILANEN A, KONTTINEN J, HUPA M. Catalytic effect of Ca and K on CO2 gasification of spruce wood char[J]. Fuel, 2015, 150:464-472. doi: 10.1016/j.fuel.2015.02.062
    [27] JI Y, LU Z, ZHAO X, HE T M, SU W. Study on the properties of Al2O3-doped (ZrO2)0.92 (Y2O3)0.08 electrolyte[J]. Solid State Ionics, 1999, 126(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=752d4b1c36fb2932d570309adba95d7c
    [28] TANAKA S, UEMURA T, ISHIZAKI K-I, NAGAYOSHI K, IKENAGA N-O, OHME H, SUZUKI T, YAMASHITA H, AMPO M. CO2 gasification of iron-loaded carbons:Activation of the iron catalyst with CO[J]. Energy Fuels, 1995, 9(1):45-52. doi: 10.1021/ef00049a007
  • 加载中
图(9)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  89
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-01-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-03-10

目录

    /

    返回文章
    返回