留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr改性Ni2P/SBA-15催化剂的制备及其加氢脱氧性能

颜子金 宋华 李锋 陈彦广

颜子金, 宋华, 李锋, 陈彦广. Zr改性Ni2P/SBA-15催化剂的制备及其加氢脱氧性能[J]. 燃料化学学报(中英文), 2018, 46(7): 809-817.
引用本文: 颜子金, 宋华, 李锋, 陈彦广. Zr改性Ni2P/SBA-15催化剂的制备及其加氢脱氧性能[J]. 燃料化学学报(中英文), 2018, 46(7): 809-817.
YAN Zi-Jin, SONG Hua, LI Feng, CHEN Yan-guang. Preparation of Zr modified Ni2P/SBA-15 catalysts and its hydrodeoxygenation performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 809-817.
Citation: YAN Zi-Jin, SONG Hua, LI Feng, CHEN Yan-guang. Preparation of Zr modified Ni2P/SBA-15 catalysts and its hydrodeoxygenation performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 809-817.

Zr改性Ni2P/SBA-15催化剂的制备及其加氢脱氧性能

基金项目: 

国家自然科学基金 21276048

东北石油大学研究生培养创新实践基地创新科研 YJSCX2017-016NEPU

详细信息
  • 中图分类号: O643.361

Preparation of Zr modified Ni2P/SBA-15 catalysts and its hydrodeoxygenation performance

Funds: 

National Natural Science Foundation of China 21276048

Innovative Scientific Research Projects of Innovative Practice Base for Postgraduate Training in Northeast Petroleum University YJSCX2017-016NEPU

More Information
  • 摘要: 以正丙醇锆(n)和Zr(SO42(m)为锆源制备了Zr改性的Ni2P/ZrO2-SBA-15(n)和Ni2P/ZrO2-SBA-15(m)催化剂,并采用XRD、BET、CO吸附、XPS、NH3程序升温脱附等手段对催化剂进行了表征。以苯并呋喃(BF)为模型化合物,研究了催化剂加氢脱氧(HDO)性能。结果表明,Zr改性后,形成了新的层状结构的ZrP;Zr的引入有助于生成更多、更小粒径的Ni2P活性相,催化剂的酸强度和酸量均提高。与正丙醇锆相比,Zr(SO42为锆源能够获得比表面积大、酸性强、酸量大的催化剂,得到更多的ZrP相、更小粒径的Ni2P晶粒,暴露更多的Ni活性位点。Ni2P/ZrO2-SBA-15(n)和Ni2P/ZrO2-SBA-15(m)的BF HDO产率分别为71.5%和85.9%,较Ni2P/SBA-15分别提高了14.0%和28.4%。催化剂HDO活性、脱氧产物选择性和产率大小顺序为:Ni2P/ZrO2-SBA-15(m)> Ni2P/ZrO2-SBA-15(n)> Ni2P/SBA-15。
  • 图  1  载体和催化剂的XRD谱图

    Figure  1  XRD patterns of the supports and the catalysts

    图  2  载体与催化剂氮气吸附-脱附曲线

    Figure  2  N2 adsorption-desorption isotherms of the supports and the catalysts

    (a): the supports; (b): the catalysts

    图  3  载体与催化剂氮气孔径分布

    Figure  3  Pore size distributions of the supports and the catalysts

    (a): the supports; (b): the catalysts

    图  4  Ni2P/ZrO2-SBA-15(m),Ni2P/ZrO2-SBA-15(n)和Ni2P/SBA-15在Ni(2p)、P(2p)区域和Zr(3d)区域XPS谱图

    Figure  4  XPS spectra of Ni2P/ZrO2-SBA-15(m), Ni2P/ZrO2-SBA-15(n) and Ni2P/SBA-15 in Ni(2p), P(2p) and Zr(3d) area

    (a): Ni 2p electronic core layer; (b): P 2p electronic core layer; (c): Zr 3d electronic core layer

    图  5  Ni2P/ZrO2-SBA-15(m), Ni2P/ZrO2-SBA-15(n)和Ni2P/SBA-15催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of Ni2P/ZrO2-SBA-15(m), Ni2P/ZrO2-SBA-15(n) and Ni2P/SBA-15 catalysts

    图  6  Ni2P/ZrO2-SBA-15(n),Ni2P/ZrO2-SBA-15(m)和Ni2P/SBA-15催化剂的BF转化率

    Figure  6  BF conversion of Ni2P/ZrO2-SBA-15(n), Ni2P/ZrO2-SBA-15(m) and Ni2P/SBA-15

    图  7  BF HDO反应途径[20]

    Figure  7  BF HDO reaction pathway

    图  8  Ni2P/ZrO2-SBA15(m)催化剂的BF的HDO反应路径

    Figure  8  Reaction path of BF HDO on Ni2P/ZrO2-SBA-15(m)

    表  1  催化剂和载体的结构性质

    Table  1  Structural properties of the catalyst and support

    Sample ABET/(m2·g-1) vp/(cm3·g-1) dBJHa/nm dXRDb/nm CO uptake /(μmol·g-1) HDO conversion x/%
    SBA-15 390 0.59 6.1 - - -
    Ni2P/SBA-15 200 0.32 5.3 18.4 38 81.0
    ZrO2-SBA-15(n) 289 0.43 6.0 - - -
    Ni2P/ZrO2-SBA-15(n) 107 0.17 6.3 13.9 43 86.2
    ZrO2-SBA-15(m) 307 0.46 5.9
    Ni2P/ZrO2-SBA-15(m) 164 0.28 6.8 12.6 44 91.3
    dBJHa: pore diameter, d≈4vBJH/ABET;
    dXRDb : calculated from the Dc=kl/βcos(q) (Scherrer equation) based on the Ni2P{1 1 1}
    下载: 导出CSV

    表  2  催化剂样品XPS结合能及表面原子比

    Table  2  XPS binding energy and surface atomic ratio of catalyst

    Sample Binding energy E/eV Superficial atomic ratio
    Ni 2p3/2 P 2p Zr 3d Ni/P Ni/Si Ni/Zr
    Ni2P Ni2+ PO43- Pδ- ZrO2 ZrP
    Ni2P/SBA-15 852.5 856.6 134.6 129.2 - - - 1:3.60 1:30
    Ni2P/ZrO2-SBA-15(n) 852.3 856.1 134.2 129.2 182.9 185.2 191.4 1:3.23 1:24 1:34
    Ni2P/ZrO2-SBA-15(m) 852.3 856.2 134.3 129.2 183.0 185.3 191.4 1:3.15 1:17 1:38
    下载: 导出CSV

    表  3  催化剂HDO产物选择性和脱氧产率

    Table  3  HDO product selectivity and yield

    Sample Yield w/%
    methylcyc-lohexane ethyl cyclohexane ethylbe-nzene 2, 3-dihydrobe-nzofuran ortho ethyl-phenol deoxidizati-on product selectivity deoxidi-zation yield
    Ni2P/SBA-15 13.2 48.7 9.2 10.6 18.3 71.1 57.5
    Ni2P/ZrO2-SBA-15(n) 12.9 51.2 19.0 10.7 6.2 83.1 71.5
    Ni2P/ZrO2-SBA-15(m) 14.1 53.1 24.9 6.3 1.6 92.1 85.9
    下载: 导出CSV
  • [1] LEON F F, GILLES B, DOROTHÉE L, THOMAS E D, VICTOR T S. Synthesis and hydrodeoxygenation activity of Ni2P/C-Effect of the palladium salt on lowering the nickel phosphide synthesis temperature[J]. J Catal, 2016, 340:154-165. doi: 10.1016/j.jcat.2016.05.016
    [2] SONG H, GONG J, SONG H, LI F, ZHANG J, CHENG Y. Preparation of core-shell structured Ni2P/Al2O3@TiO2 and its hydrodeoxygenation performance for benzofuran[J]. Catal Commun, 2016, 85:1-4. doi: 10.1016/j.catcom.2016.07.005
    [3] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels, 2004, 18(2):590-598. doi: 10.1021/ef034067u
    [4] GOYAL H B, SEAL D, SAXENA R C. Bio-Fuels from thermochemical conversion of renewable resources:A review[J]. Renewable Sustainable Energy Rev, 2008, 12(2):504-517. doi: 10.1016/j.rser.2006.07.014
    [5] GÉRALDINE L, SOIZIC B, JULIE R, FRÉDÉRIC R, ANNE S M, LAURENCE C, ANNIE P, MICHEL R, SYLVETTE B. Effect of the presence of ionic liquid during the NiMoS bulk preparation in the transformation of decanoic acid[J]. Appl Catal A:Gen, 2017, 532:120-132. doi: 10.1016/j.apcata.2016.12.020
    [6] ZHAO H Y, LI D, BUI P, OYAMA S T. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Appl Catal A:Gen, 2011, 391(1/2):305-310. http://cn.bing.com/academic/profile?id=6208280ff4015fc576f537a3a16d4249&encoded=0&v=paper_preview&mkt=zh-cn
    [7] MA H, LI Q, SHI Y, SUN X. Ni2P/ZrO2-SBA-15 dibenzothiophene hydrodesulfurization catalysts:Preparation, characterization and evaluation[J]. Trans Tianjin Univ, 2017:1-11. https://www.researchgate.net/publication/244493708_Effect_of_sintering_on_the_catalytic_functionalities_of_MOS_2_Al_2_O_3_catalysts
    [8] LUO N, CAO Y, LI J, GUO W, ZHAO Z. Preparation of Ni2P/ZrO2-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil[J]. Chem Technol Fuels Oil, 2016, 44(1):76-83. doi: 10.1016/S1872-5813(16)30007-X
    [9] LIU D, WANG A, LIU C, ROEL P. Ni2P/Al2O3 hydrodesulfurization catalysts prepared by separating the nickel compound and hypophosphite[J]. Catal Today, 2017, 292:133-142. doi: 10.1016/j.cattod.2016.09.019
    [10] FAN G, SHEN M, ZHANG Z, FARUI J. Preparation characterization and catalytic properties of S2O82-/ZrO2-CeO2 solid superacid catalyst[J]. J Rare Earth, 2009, 27(3):437-442. doi: 10.1016/S1002-0721(08)60266-5
    [11] LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts[J]. J Phys Chem B, 2004, 108(30):10930-10941. doi: 10.1021/jp037101e
    [12] LEE Y K, OYAMA S T. Comparison of structural properties of SiO2, Al2O3, and C/Al2O3 supported Ni2P catalysts[J].Stud Surf Sci Catal, 2006, 159:357-360. doi: 10.1016/S0167-2991(06)81607-1
    [13] CECILIA J A, INFANTES M A, RODRÍGUEZ C E, JIMÉNEZ L A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal, 2009, 263(J):4-15. http://cn.bing.com/academic/profile?id=f7308d482278814bdcd95e50f778cac3&encoded=0&v=paper_preview&mkt=zh-cn
    [14] GALTAYRIES A, SPORKEN R, RIGA J, BLANCHARD G, CAUDANO R. XPS comparative study of ceria/zirconia mixed oxides:powders and thin film characterisation[J]. J Electron Spectrosc, 1998, 88:951-956. http://cn.bing.com/academic/profile?id=1c52c127097ae26a9ca9ccc6ed720d1a&encoded=0&v=paper_preview&mkt=zh-cn
    [15] PAN B, ZHANG Q, DU W, ZHANG W, PAN B, ZHANG Q, XU Z, ZHANG Q. Selective heavy metals removal from waters by amorphous zirconium phosphate:Behavior and mechanism[J]. Water Res, 2007, 41(14):3103-3111. doi: 10.1016/j.watres.2007.03.004
    [16] LI K, WANG R J, CHEN J X. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels, 2011, 25:854-863. doi: 10.1021/ef101258j
    [17] ZHU T, SONG H, DAI X, SONG H. Preparation of Ni2P/Al-SBA-15 catalyst and its performance for benzofuran hydrodeoxygenation[J] Chin J Chem Eng, 2017, 25(12):1784-1790. doi: 10.1016/j.cjche.2017.03.027
    [18] LAN L, GE S, LIU K, HOU Y, BAO X. Synthesis of Ni2P promoted trimetallic NiMoW/γ-Al2O3 catalysts for diesel oil hydrotreatment[J]. J Nat Gas Chem, 2011, 20:117-122. doi: 10.1016/S1003-9953(10)60173-9
    [19] MOON J S, KIM E G, LEE Y K. Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol:A joint XAFS and DFT study[J]. J Catal, 2014, 311:144-152. doi: 10.1016/j.jcat.2013.11.023
    [20] LEE C L, OLLIS D F. Catalytic hydrodeoxygenation of benzofuran and o-ethylphenol[J]. J Catal, 1984, 87(2):325-331. doi: 10.1016/0021-9517(84)90193-3
    [21] BENSON S W. Thermochemical Kinetics[M]. New York:Wiley, 1968:23-32.
    [22] GONÇALVES V O O, DE SOUZA P M, DA SILVA V T, NORONHA F B, RICHARD F. Kinetics of the hydrodeoxygenation of cresol isomers over Ni2P/SiO2:Proposals of nature of deoxygenation active sites based on an experimental study[J]. Appl Catal B:Environ, 2017, 205:357-367. doi: 10.1016/j.apcatb.2016.12.051
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  26
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-06
  • 修回日期:  2018-05-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回