留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭化程度对核桃壳焦孔隙结构和燃烧特性的影响

刁瑞 王储 朱谢飞 朱锡锋

刁瑞, 王储, 朱谢飞, 朱锡锋. 炭化程度对核桃壳焦孔隙结构和燃烧特性的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1173-1180.
引用本文: 刁瑞, 王储, 朱谢飞, 朱锡锋. 炭化程度对核桃壳焦孔隙结构和燃烧特性的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1173-1180.
DIAO Rui, WANG Chu, ZHU Xie-fei, ZHU Xi-feng. Influence of carbonization degree of walnut shell char on pore structure and combustion characteristics[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1173-1180.
Citation: DIAO Rui, WANG Chu, ZHU Xie-fei, ZHU Xi-feng. Influence of carbonization degree of walnut shell char on pore structure and combustion characteristics[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1173-1180.

炭化程度对核桃壳焦孔隙结构和燃烧特性的影响

基金项目: 

国家重点研发计划 2018YFB1501404

详细信息
    通讯作者:

    ZHU Xi-feng, E-mail: xfzhu@ustc.edu.cn

  • 中图分类号: TK6

Influence of carbonization degree of walnut shell char on pore structure and combustion characteristics

Funds: 

the National Key Research and Development Program of China 2018YFB1501404

  • 摘要: 利用傅里叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)研究了炭化程度对核桃壳焦孔隙及微晶结构的影响,并使用热重-差示扫描量热仪(TG-DSC)对核桃壳焦及其原料的燃烧特性进行了分析。结果表明,合适的炭化程度(焦炭挥发分含量为6%-15%)使焦炭内乱层石墨变得无序,碳质微晶结构中缺陷增多,导致焦炭内孔隙结构相对发达;热解温度为500 ℃时,核桃壳焦的比表面积最大,为374.60 m2/g;热解温度为600 ℃时,核桃壳焦的燃烧特性最优,其燃烧特性指数为7.16×106;合适的炭化程度可使焦炭内的挥发分含量减少,从而使得核桃壳焦的高位热值升高,且由于相对发达的孔隙使焦炭在燃烧时与空气的接触面积增大,导致焦炭的燃烧速率加快。
  • 图  1  原料及各核桃壳焦的红外光谱谱图

    Figure  1  FT-IR spectra of walnut shell and its derived char at different temperatures

    图  2  核桃壳焦的O/C和比表面积

    Figure  2  O/C and specific surface area of walnut shell chars

    图  3  原料及不同炭化程度核桃壳焦的SEM照片

    Figure  3  SEM images of walnut shell char from fast pyrolysis at different temperature

    图  4  核桃壳及不同炭化程度核桃壳焦的XRD谱图

    Figure  4  XRD patterns of walnut shell and its derived chars from different temperature

    图  5  N2气氛下核桃壳焦的TG-DTG曲线

    Figure  5  TG-DTG curves of walnut shell chars under N2

    (a): TG curves of walnut shell chars under N2; (b): DTG curves of walnut shell chars under N2

    图  6  空气气氛下核桃壳焦的TG-DTG曲线

    Figure  6  TG-DTG curves of walnut shell char under air

    (a): TG curves of walnut shell char under air; (b): DTG curves of walnut shell char under air

    图  7  空气气氛下核桃壳焦的DSC曲线

    Figure  7  DSC curve of walnut shell char under air

    表  1  核桃壳的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of walnut shell

    Proximate analysis war/% Ultimate analysis war/% QHHV/(MJ·kg-1)
    M V A FCa C H Ob N S
    3.73 74.32 0.97 20.98 50.54 5.84 43.02 0.34 0.26 19.20
    a, b: calculated by difference
    下载: 导出CSV

    表  2  核桃壳焦的工业分析和元素分析

    Table  2  Proximate and ultimate analyses of walnut shell char

    Sample Proximate analysis wd/% Ultimate analysis wd/% O/C H/C QHHV/(MJ·kg-1) w/%
    V A FCa C H Ob N S
    wsbc-300 65.14 0.94 39.92 59.97 5.32 34.41 0.05 0.25 0.57 0.09 23.18 84.62
    wsbc-400 39.25 1.97 58.78 79.00 4.10 16.54 0.08 0.28 0.21 0.05 29.92 33.31
    wsbc-500 14.87 2.44 82.69 85.35 3.61 10.69 0.09 0.26 0.13 0.04 32.55 27.20
    wsbc-600 6.59 2.72 90.69 90.57 3.10 5.98 0.11 0.24 0.07 0.03 33.53 24.55
    wsbc-700 5.11 3.64 91.25 92.37 2.64 4.66 0.11 0.22 0.05 0.03 33.46 22.83
    a, b: calculated by difference
    下载: 导出CSV

    表  3  核桃壳焦的燃烧特性指数

    Table  3  Combustion characteristic index of walnut shell chars

    Sample wsbc-300 wsbc-400 wsbc-500 wsbc-600 wsbc-700
    Temperature range Δt/℃ 326-537 378-548 430-562 444-556 469-633
    Wavg/(%·min-1) 22.64 19.18 27.56 31.75 20.03
    Wmax/(%·min-1) 10.96 15.88 24.24 24.71 15.85
    S/×106 4.35 3.89 6.43 7.16 2.28
    下载: 导出CSV

    表  4  核桃壳焦的燃烧效率参数

    Table  4  Combustion efficiency parameters of walnut shell chars

    Sample wsbc-300 wsbc-400 wsbc-500 wsbc-600 wsbc-700
    ΔQ/(MJ·kg-1) 16.70 21.23 26.15 27.75 25.22
    η/% 72.04 70.96 80.34 80.69 75.37
    下载: 导出CSV
  • [1] LIU Z, HAN G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis[J]. Fuel, 2015, 158: 159-165. doi: 10.1016/j.fuel.2015.05.032
    [2] TAN X, LIU S, LIU Y, GU Y, ZENG G, HU X, WANG X, LIU S. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage[J]. Bioresour Technol, 2017, 227: 359-372. doi: 10.1016/j.biortech.2016.12.083
    [3] 李文跃, 吴诗勇, 吴幼青, 黄胜, 高晋生.微孔椰壳焦孔结构表征[J].燃料化学学报, 2019, 47(3): 297-305. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201903006.htm

    LI Wen-yue, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Pore structure characterization of coconut shell char with narrow microporosity[J]. J Fuel Chem Technol, 2019, 47(3): 297-305. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201903006.htm
    [4] 耿毅德, 梁卫国, 刘剑, 康志勤, 武鹏飞, 姜玉龙.不同温压条件下油页岩孔裂隙结构演化试验研究[J].岩石力学与工程学报, 2018, 37(11): 2510-2519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201811010

    GENG Yi-de, LIANG Wei-guo, LIU Jian, KANG Zhi-qin, WU Peng-fei, JIANG Yu-long. Experimental study on the variation of pore and fracture structure of oil shale under different temperatures and pressures[J]. Chin J Rock Mech Eng, 2017, 227: 359-372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201811010
    [5] 丘倩媛, 陈倩阳, 刘志军, 刘江.以椰壳生物质炭为燃料的直接炭固体氧化物燃料电池[J].燃料化学学报, 2019, 47(3): 352-360. http://www.ccspublishing.org.cn/article/id/606b92ca-0005-4c6e-a088-28e5a23f07f3

    QIU Qian-yuan, CHEN Qian-yang, LIU Zhi-jun, LIU Jiang. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell. J Fuel Chem Technol, 2019, 47(3): 352-360. http://www.ccspublishing.org.cn/article/id/606b92ca-0005-4c6e-a088-28e5a23f07f3
    [6] 汪岸, 骆仲泱, 方梦祥, 岑建梦, 姚鹏.煤热解沥青炭化程度对KOH活化制备活性炭孔隙结构的影响[J].浙江大学学报(工学版), 2018, 52(8): 1551-1557. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201808015

    WANG An, LUO Zhong-yang, FANG Meng-xiang, CEN Jian-meng, YAO Peng. Influence of carbonization degree of coal pyrolytic pitch on the pore structure of carbon activated with KOH[J]. J Zhejiang Univ, 2018, 52(8): 1551-1557. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201808015
    [7] 周芳磊, 胡雨燕, 陈德珍.不同种类生物质热解残焦的CO2气化研究[J].太阳能学报, 2017, 38(5): 1440-1446. http://d.old.wanfangdata.com.cn/Periodical/tynxb201705038

    ZHOU Fang-lei, HU Yu-yan, CHEN De-zhen. Production of CO by CO2 gasification of biomass-derived char[J]. Acta Energ Sol Sin, 2017, 38(5): 1440-1446. http://d.old.wanfangdata.com.cn/Periodical/tynxb201705038
    [8] CHEN T, CAI J, LIU R. Combustion kinetics of biochar from fast pyrolysis of pine sawdust: isoconversional analysis[J]. Energy Sin, 2015, 37(20): 2208-2217. http://cn.bing.com/academic/profile?id=08c27a67503f64d6bf49bcdca477e6b4&encoded=0&v=paper_preview&mkt=zh-cn
    [9] YOUSAF B, LIU G, ABBAS Q, WANG R, ALI M U, ULLAH H, LIU R, ZHOU C. Systematic investigation on combustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass-and biochar-coal co-combustion systems[J]. Appl Energy, 2017, 208: 142-157. doi: 10.1016/j.apenergy.2017.10.059
    [10] DUNNIGAN L, ASHMAN P J, ZHANG X, KWONG C. Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles[J]. J Clean Prod, 2018, 172: 1639-1645. doi: 10.1016/j.jclepro.2016.11.107
    [11] BRASSARD P, GODBOUT S, RAGHAVAN V, PALACIOS H J, GRENIER M, DAN Z. The production of engineered biochars in a vertical auger pyrolysis reactor for carbon sequestration[J]. Energies, 2017, 10(3): 288. doi: 10.3390/en10030288
    [12] 白云坡, 杨勇, 王珏, 郑林, 廉鹏飞, 青明, 王有良, 王洪, 张广积.炭化过程对铁基费托合成催化剂强度和结构的影响[J].燃料化学学报, 2018, 46(2): 204-210. doi: 10.3969/j.issn.0253-2409.2018.02.010

    BAI Yun-po, YANG Yong, WANG Jue, ZHENG Lin, LIAN Peng-fei, QING Ming, WANG You-liang, WANG Hong, ZHANG Guang-ji. Effect of carbonization process on the strength and structure of Fe-based Fischer-Tropsch synthesis catalyst[J]. J Fuel Chem Technol, 2018, 46(2): 204-210. doi: 10.3969/j.issn.0253-2409.2018.02.010
    [13] LI K, ZHU C, ZHANG L, ZHU X. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source[J]. Bioresour Technol, 2016, 209: 142-147. doi: 10.1016/j.biortech.2016.02.136
    [14] CHEN D, ZHENG Y, ZHU X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part Ⅰ: Kinetic analysis for the drying and devolatilization stages[J]. Bioresour Technol, 2013, 131: 40-46. doi: 10.1016/j.biortech.2012.12.136
    [15] 朱谢飞, 李凯, 马善为, 朱锡锋.生物油蒸馏残渣理化性质及热失重研究[J].燃料化学学报, 2017, 45(1): 29-33. doi: 10.3969/j.issn.0253-2409.2017.01.005

    ZHU Xie-fei, LI Kai, MA Shan-wei, ZHU Xi-feng. Physicochemical characteristics and TGA of distillation residues from bio-oil[J]. J Fuel Chem Technol, 2017, 45(1): 29-33. doi: 10.3969/j.issn.0253-2409.2017.01.005
    [16] 李晓辉.活性炭纤维在热处理过程中的结构变化及电化学性能[D].上海: 华东理工大学, 2018.

    LI Xiao-hui. Structure changes and electrochemical performance of activated carbon fibers during heat-treatment[D]. Shanghai: East China University of Science and Technology, 2018.
    [17] 王爽, 姜秀民, 王谦, 吉恒松.海藻生物质颗粒流化床燃烧试验研究[J].化工学报, 2013, 64(5): 1592-1600. doi: 10.3969/j.issn.0438-1157.2013.05.013

    WANG Shuang, JIANG Xiu-min, WANG Qian, JI Heng-song. Fluidized bed combustion of seaweed biomass particles[J]. J Chem Ind Eng, 2013, 64(5): 1592-1600. doi: 10.3969/j.issn.0438-1157.2013.05.013
    [18] KRÓI M, GRYGLEWICAZ G, MACHNIKOWSKI J. KOH activation of pitch-derived carbonaceous materials-Effect of carbonization degree[J]. Fuel Process Technol, 2011, 92(1): 158-165. doi: 10.1016/j.fuproc.2010.09.019
    [19] 林淑萍, 徐浩, 罗诗渊, 马志超, 林起浪.新型沥青基高比表面积活性炭的制备及性能[J].化工新型材料, 2015, 43(12): 137-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201512046

    LIN Shu-ping, XU Hao, LUO Shi-yuan, MA Zhi-chao, LIN Qi-liang. Preparation and property of pitch-based activated carbons with high surface area[J]. New Chem Mater, 2015, 43(12): 137-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201512046
    [20] KANEKO K, ISHII C, RUIKE M. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons[J]. Carbon, 1992, 30(7): 1075-1088. doi: 10.1016/0008-6223(92)90139-N
    [21] WANG G, YANG J, PARK J, GOU X, WANG B, LIU H, YAO J. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C, 2008, 112(22): 8192-8195 doi: 10.1021/jp710931h
    [22] ZHANG L, LI S, LI K, ZHU X. Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: Effects of pyrolysis temperature and residence time[J]. Energy Convers Manage, 2018, 166: 260-267. doi: 10.1016/j.enconman.2018.04.002
    [23] 陈鸿, 孙学信, 韩才元, 崔和平.煤粉孔隙结构对燃烧过程的影响[J].化工学报, 1994, 4(3): 327-333. http://www.cqvip.com/Main/Detail.aspx?id=1383194

    CHEN Hong, SUN Xue-xin, HAN Cai-yuan, CUI He-ping. Effects of porous structure on coal particle reactivity of combustion[J]. J Chem Ind Eng, 1994, 4(3): 327-333. http://www.cqvip.com/Main/Detail.aspx?id=1383194
    [24] 熊邵武, 张守玉, 吴巧美, 郭熙, 董爱霞, 陈川, 郑红俊, 邓文祥, 刘大海, 唐文蛟.生物质炭燃烧特性与动力学分析[J].燃料化学学报, 2013, 41(8): 958-965. doi: 10.3969/j.issn.0253-2409.2013.08.009

    XIONG Shao-wu, ZHANG Shou-yu, WU Qiao-mei, GUO Xi, DONG Ai-xia, CHEN Chuan, ZHENG Hong-jun, DENG Wen-xiang, LIU Da-hai, TANG Wen-jiao. Investigation on combustion characterisitcs and kinetics of bio-char[J]. J Fuel Chem Technol, 2013, 64(8): 958-965. doi: 10.3969/j.issn.0253-2409.2013.08.009
    [25] 邹冲, 温良英, 张生富, 白晨光, 吕学伟, 王昆, 谭秀琴.过氧化钙对煤粉燃烧效率的影响[J].中国电机工程学报, 2012, 32(5): 15-20. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201205004

    ZOU Chong, WEN Liang-ying, ZHANG Sheng-fu, BAI Chen-guang, LV Xue-wei, WANG Kun, TAN Xiu-qin. Effect of calcium peroxide on combustion efficiency of pulverized coal[J]. Proc CSEE, 2012, 32(5): 15-20. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201205004
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  38
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-08-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回