留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuMgAlOx复合氧化物催化甲醇乙醇Guerbet反应:M2+/Al3+比的影响

程福龙 郭荷芹 崔静磊 侯博 李德宝

程福龙, 郭荷芹, 崔静磊, 侯博, 李德宝. CuMgAlOx复合氧化物催化甲醇乙醇Guerbet反应:M2+/Al3+比的影响[J]. 燃料化学学报(中英文), 2018, 46(12): 1472-1481.
引用本文: 程福龙, 郭荷芹, 崔静磊, 侯博, 李德宝. CuMgAlOx复合氧化物催化甲醇乙醇Guerbet反应:M2+/Al3+比的影响[J]. 燃料化学学报(中英文), 2018, 46(12): 1472-1481.
CHENG Fu-long, GUO He-qin, CUI Jing-lei, HOU Bo, LI De-bao. Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1472-1481.
Citation: CHENG Fu-long, GUO He-qin, CUI Jing-lei, HOU Bo, LI De-bao. Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1472-1481.

CuMgAlOx复合氧化物催化甲醇乙醇Guerbet反应:M2+/Al3+比的影响

基金项目: 

国家自然科学基金 21736007

国家自然科学基金 21303241

详细信息
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: O643

Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio

Funds: 

the National Natural Science Foundation of China 21736007

the National Natural Science Foundation of China 21303241

More Information
  • 摘要: 以类水滑石为前驱体,通过调控M2+/Al3+比制备了系列具有不同表面性质的MgAlOx(MA)和CuMgAlOx(CMA)催化剂,并分别应用于甲醛乙醛缩合反应(甲醇乙醇Guerbet反应的第二步反应)和甲醇乙醇Guerbet反应。采用NH3/CO2-TPD、XPS、H2-TPR和H2-TPD技术对催化剂表面酸碱性以及铜物种的性质进行了表征。结果表明,甲醇乙醇Guerbet反应性能与催化剂表面Cu0比表面积和中强碱数目有关,提高Cu0比表面积有利于甲醇乙醇脱氢生成甲醛和乙醛,增强中强碱数目能促进甲醛乙醛缩合反应。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  前驱体的XRD谱图

    Figure  1  XRD patterns of HMA (a) and HCMA (b) samples

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of MA (a) and CMA (b) catalysts

    图  3  前驱体样品的热重曲线

    Figure  3  TG-DTG curves of HMA (a) and HCMA (b) precursors

    图  4  催化剂的CO2-TPD谱图

    Figure  4  CO2-TPD profiles of MA (a) and CMA catalysts (b)

    图  5  催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of MA catalysts (a) and CMA catalysts (b)

    图  6  CMA催化剂的Cu 2p XPS谱图

    Figure  6  XPS Cu 2p spectra of CMA catalysts

    图  7  CMA催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of CMA catalysts

    图  8  CMA催化剂的H2-TPD谱图

    Figure  8  H2-TPD profiles of CMA catalysts

    图  9  乙醛转化率以及正丙醛时空收率与中强碱数目的关系

    Figure  9  Correlation between the conversion of acetaldehyde and the STY of propanal with the amount of moderate basic sites

    图  10  甲醇和乙醇转化率与Cu0比表面积之间的关系

    Figure  10  Correlation between the conversion of methanol and ethanol with ACu0

    图  11  C3和C4产物时空收率与Cu0比表面积之间的关系

    Figure  11  Correlation between STYs of C3 and C4 products with ACu0

    表  1  催化剂组成和织构性质

    Table  1  Catalyst composition and structural and textural properties

    Catalyst Composition wmol /%a M2+/Al3+ratio a/nm c/nm Surface area A/(m2·g-1)
    Cu Mg Al precusor catalyst
    MA-2/1 0 67.92 32.08 2.12 0.304 2.296 212.57 276.25
    MA-3/1 0 71.26 28.74 2.48 0.306 2.324 209.53 249.24
    MA-4/1 0 76.74 23.26 3.30 0.307 2.348 158.56 211.52
    MA-5/1 0 80.59 19.41 4.15 0.307 2.357 166.37 212.52
    CMA-2/1 0.99 63.69 35.32 1.83 0.304 2.291 131.06 217.83
    CMA-3/1 1.02 73.10 25.88 2.86 0.305 2.323 231.31 355.26
    CMA-4/1 1.08 76.43 22.49 3.45 0.307 2.354 112.02 202.30
    CMA-5/1 1.06 80.70 18.24 4.48 0.307 2.368 114.63 167.41
    a:obtained from ICP
    下载: 导出CSV

    表  2  催化剂的碱性和酸性分布

    Table  2  The distribution of surface basic sites and acid sites of catalysts

    Catalyst Amount of basic sites /(μmol·g-1) Amount of acid sites /(μmol·g-1)
    total weak moderate strong total weak moderate strong
    MA-2/1 281.17 35.83 153.96 91.38 140.03 85.52 0 54.51
    MA-3/1 283.59 27.16 167.00 89.43 116.63 61.98 0 54.65
    MA-4/1 321.94 32.31 184.45 105.18 94.95 49.75 0 45.20
    MA-5/1 353.46 36.05 191.48 125.93 94.44 35.43 0 59.01
    CMA-2/1 161.25 11.05 103.31 46.89 204.22 38.37 111.91 53.94
    CMA-3/1 180.10 23.48 106.96 49.66 171.80 33.34 101.78 36.68
    CMA-4/1 203.28 21.05 124.98 57.25 138.76 24.27 69.06 45.43
    CMA-5/1 236.87 59.18 127.76 49.93 131.69 23.96 67.89 39.84
    下载: 导出CSV

    表  3  CMA催化剂表面组成和Cu0比表面积以及氢脱附量

    Table  3  Surface composition, specific surface area of Cu0, and the amount of H2 desorption of CMA catalysts

    Catalyst Surface compositiona wmol/% ACu0b/(m2·g-1) H2 desorptionc/(μmol·g-1)
    Cu Mg Al
    CMA-2/1 0.94 57.09 41.97 4.93 57.84
    CMA-3/1 1.28 65.15 33.57 6.10 71.25
    CMA-4/1 1.12 68.87 30.01 9.16 104.86
    CMA-5/1 1.01 79.41 19.58 4.35 52.39
    a: obtained from XPS; b: calculated by N2O chemisorptions; c: obtained from H2-TPD
    下载: 导出CSV

    表  4  MA催化剂甲醛和乙醛反应的催化性能

    Table  4  Formaldehyde and acetaldehyde reaction performance of MA catalysts

    Catalyst x/% s/% STY /(g·kg-1·h-1)
    PA MO CO2 IBA PO MF EO PA MO CO2
    MA-2/1 24.77 67.07 13.34 13.33 2.71 1.16 0.68 1.71 62.77 20.66 28.35
    MA-3/1 28.28 61.19 17.11 16.11 2.73 0.99 0.87 1.00 70.56 32.65 42.25
    MA-4/1 31.89 56.29 19.01 19.78 2.28 0.75 0.58 1.31 85.68 47.89 68.44
    MA-5/1 33.96 53.52 20.45 20.92 2.42 0.90 0.56 1.23 90.90 57.47 80.74
    reaction conditions: t=260 ℃, p=0.1 MPa, GHSV=750 mL·gcat-1·h-1, LHSV=2 mL·gcat-1·h-1, formaldehyde/acetaldehyde (molar ratio)=4; x: acetaldehyde conversion; s: selectivity; STY: space time yield; PA: propanal; MO: methanol; IBA: isobutanal; PO: propanol; MF: methyl formate; EO: ethanol
    下载: 导出CSV

    表  5  CMA催化剂甲醇和乙醇Guerbet反应的催化性能

    Table  5  Methanol and ethanol coupling reaction performance of CMA catalysts

    CMA-2/1 CMA-3/1 CMA-4/1 CMA-5/1
    Conversion x/%
    Methanol 6.76 8.13 10.56 5.89
    Ethanol 24.79 27.46 43.92 18.00
    Products selectivity s/%
    C3+C4 aldehydes
    Propanal 30.79 25.77 30.45 32.26
    Isobutanal 15.28 26.91 17.87 4.81
    1-butanal 6.91 5.76 7.20 0.93
    C3+C4 alcohols
    Propanol 29.16 22.46 23.15 48.69
    Isobutanol 6.73 4.99 3.81 1.37
    1-butanol 3.14 5.98 6.75 1.85
    Esters
    MF 0.72 1.25 0.80 0.70
    MA 1.76 1.43 3.76 1.93
    Others
    DME 1.34 1.22 0.52 3.82
    CO2 4.17 4.23 5.69 3.64
    Products STY /(g·kg-1·h-1)
    C3+C4 alcohols 7.93 11.89 27.39 7.43
    C3+C4 aldehydes 12.11 22.79 47.98 5.35
    reaction conditions:t=260 ℃, p=0.1 MPa, GHSV=750 mL·gcat-1·h-1, LHSV=2 mL·gcat-1·h-1, methanol/ethanol (molar ratio)=4/1; STY: space time yield; MF: methyl formate; MA: methyl acetate; DME: dimethyl ether; C3+C4 alcohols: propanol, isobutanol, and n-butanol; C3+C4 aldehydes: propanal, isobutanal, and n-butanal; Esters: methyl formate and methyl acetate
    下载: 导出CSV
  • [1] BIERMAN M, GRUSS H, HUMMEL W, GROEGER H. Guerbet alcohols:From processes under harsh conditions to synthesis at room temperature under ambient pressure[J]. ChemCatChem, 2016, 8(5):895-899. doi: 10.1002/cctc.201501241
    [2] LIU Q, XU G Q, WANG X C, MU X D. Selective upgrading of ethanol with methanol in water for the production of improved biofuel-isobutanol[J]. Green Chem, 2016, 18(9):2811-2818. doi: 10.1039/C5GC02963E
    [3] AJJOU A N, ALPER H. A new, efficient, and in some cases highly regioselective water-soluble polymer rhodium catalyst for olefin hydroformylation[J]. J Am Chem Soc, 1998, 120(7):1466-1468. doi: 10.1021/ja973048u
    [4] GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-cased catalysts[J]. ACS Catal, 2011, 1(6):641-656. doi: 10.1021/cs2001048
    [5] ANDRIANARY P, JENNER G, LIBS S, TELLER G. Homogeneous catalysis of CO2-H2 reactions-homologation of C-3 alcohols[J]. J Mol Catal, 1987, 39(1):93-103.
    [6] GUERBET M. Condensation of isopropylic alcohol with its sodium derivative; formation of methylisobutylcarbinol and dimethyl-2, 4-heptanol-6[J]. Cr Hebd Acad Sci, 1909, 149:129-132.
    [7] WINGAD R L, BERSTROEM E J E, EVERETT M, PELLOW K J, WASS D F. Catalytic conversion of methanol/ethanol to isobutanol-a highly selective route to an advanced biofuel[J]. Chem Commun, 2016, 52(29):5202-5204. doi: 10.1039/C6CC01599A
    [8] DI COSIMO J I, APESTEGUI A C R, GINES M J L, IGLESIA E. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts[J]. J Catal, 2000, 190(2):261-275. doi: 10.1006/jcat.1999.2734
    [9] 邱坤赞, 郭文文, 王海霞, 朱玲君, 王树荣. Cu/SiO2催化剂结构对乙酸甲酯加氢性能的影响[J].物理化学学报, 2015, 31(6):1129-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201506016

    QIU Kun-zan, GUO Wen-wen, WANG Hai-xia, ZHU Ling-jun, WANG Shu-rong. Influence of catalyst structure on performance of Cu/SiO2 in hydrogenation of methyl acetate[J]. Acta Phys-Chim Sin, 2015, 31(6):1129-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201506016
    [10] 付朋, 李永刚, 宁春利. Cu/ZnO/Al2O3催化剂用于醋酸仲丁酯加氢制备仲丁醇联产乙醇[J].工业催化, 2017, 25(4):68-73. doi: 10.3969/j.issn.1008-1143.2017.04.012

    FU Peng, LI Yong-gang, NING Chun-li. Hydrogenation of sec-butyl acetate to sec-butyl alcohol and ethanol over Cu/ZnO/Al2O3 catalyst[J]. Ind Catal, 2017, 25(4):68-73. doi: 10.3969/j.issn.1008-1143.2017.04.012
    [11] 雒京, 李洪广, 赵宁, 王峰, 肖福魁.磺化Salen金属配合物插层水滑石选择性催化氧化甘油制备二羟基丙酮的研究[J].燃料化学学报, 2015, 43(6):677-683. doi: 10.3969/j.issn.0253-2409.2015.06.006

    LUO Jing, LI Hong-guang, ZHAO Ning, WANG Feng, XIAO Fu-kui. Selective oxidation of glycerol to dihydroxyacetone over layer double hydroxide intercalated with sulfonato-salen metal complexes[J]. J Fuel Chem Technol, 2015, 43(6):677-683. doi: 10.3969/j.issn.0253-2409.2015.06.006
    [12] GAO P, LI F, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A:Gen, 2013, 468:442-452. doi: 10.1016/j.apcata.2013.09.026
    [13] 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕.以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J].物理化学学报, 2014, 30(6):1155-1162. http://www.cqvip.com/QK/92644X/201406/49795721.html

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014, 30(6):1155-1162. http://www.cqvip.com/QK/92644X/201406/49795721.html
    [14] STOSIC D, HOSOGLU F, BENNICI S, TRAVET A, CAPRON M, DUMEIGNIL F, COUTURIER J L, DUBOIS J L, AUROUX A. Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7[J]. Catal Commun, 2017, 8:14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ada854420c58558d21c416d7aeb490a3
    [15] SHEN J Y, TU M, HU C. Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures[J]. J Solid State Chem, 1998, 137(2):295-301. doi: 10.1006/jssc.1997.7739
    [16] 席靖宇, 王志飞, 王卫平, 吕功煊. Cu-Ni/Zn催化剂甲醇裂解机理原位XPS研究[J].物理化学学报, 2002, 18(1):82-86. doi: 10.3866/PKU.WHXB20020119

    XI Jing-yu, WANG Zhi-fei, WANG Wei-ping, LÜ Gong-xuan. In-situ XPS for reaction mechanism of methanol decomposition over Cu-Ni/Zn catalyst[J]. Acta Phys-Chim Sin, 2002, 18(1):82-86. doi: 10.3866/PKU.WHXB20020119
    [17] HUANG Z W, CUI F, XUE J J, ZUO J L, CHEN J, XIA C G. Cu/SiO2 catalysts prepared by hom-and heterogeneous deposition-precipitation methods:Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catal Today, 2012, 183(1):42-51. http://www.sciencedirect.com/science/article/pii/S0920586111006304
    [18] KANNAN S, DUBEV A, KNOZINGER H. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J]. J Catal, 2005, 231(2):381-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6027f71359050c250d9e26a0ade87a4c
    [19] GAO P, LI F, ZHAN H J, ZHAO N, XIAO F K, WEI W, ZHONG L S, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298:51-60. doi: 10.1016/j.jcat.2012.10.030
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  19
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-08-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回