留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭模板构筑Fe-Ni复合载氧体及其化学链制氢反应性能研究

吴宪爽 何方 魏国强 黄振 赵坤 孟俊光 赵增立 李海滨

吴宪爽, 何方, 魏国强, 黄振, 赵坤, 孟俊光, 赵增立, 李海滨. 生物炭模板构筑Fe-Ni复合载氧体及其化学链制氢反应性能研究[J]. 燃料化学学报(中英文), 2018, 46(4): 500-512.
引用本文: 吴宪爽, 何方, 魏国强, 黄振, 赵坤, 孟俊光, 赵增立, 李海滨. 生物炭模板构筑Fe-Ni复合载氧体及其化学链制氢反应性能研究[J]. 燃料化学学报(中英文), 2018, 46(4): 500-512.
WU Xian-shuang, HE Fang, WEI Guo-qiang, HUANG Zhen, ZHAO Kun, MENG Jun-guang, ZHAO Zeng-li, LI Hai-bin. Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 500-512.
Citation: WU Xian-shuang, HE Fang, WEI Guo-qiang, HUANG Zhen, ZHAO Kun, MENG Jun-guang, ZHAO Zeng-li, LI Hai-bin. Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 500-512.

生物炭模板构筑Fe-Ni复合载氧体及其化学链制氢反应性能研究

基金项目: 

广东省科技计划项目 2015A010106009

广东省科技计划项目 2015A020215023

广州市科技计划项目 201707010202

详细信息
  • 中图分类号: TQ116.2;TQ546

Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation

Funds: 

the Science & Technology Research Project of Guangdong Province 2015A010106009

the Science & Technology Research Project of Guangdong Province 2015A020215023

the Science and Technology Program of Guangzhou 201707010202

More Information
  • 摘要: 采用松木热解生物炭为模板构筑Fe-Ni复合载氧体(Fe-Ni/BC),并与溶胶-凝胶法制备的NiFe2O4载氧体(NiFe2O4/SG)对比,采用SEM、XRD、XPS、BET、H2-TPR、TG-redox循环等表征方法考察载氧体的物理、化学性质,并在固定床上进行化学链制氢循环实验。结果表明,Fe-Ni/BC载氧体为Ni0.6Fe2.4O4与Fe2O3的混合晶体,保留了生物炭骨架并形成了大孔结构。与NiFe2O4/SG相比,Fe-Ni/BC平均粒径更小,比表面积更大,吸附氧含量更高,更有利于氧的释放。在固定床实验过程中,Fe-Ni/BC表现出更强的化学链制氢与抗积炭性能,其最大产氢速率是NiFe2O4/SG的1.58倍,制取H2的相对浓度可达到99.5%以上。
  • 图  1  化学链制氢示意图

    Figure  1  Schematic diagram of CLHG

    图  2  固定床实验装置示意图

    Figure  2  Schematic diagram of fixed bed reactor

    图  3  生物炭与载氧体的SEM照片

    Figure  3  SEM images of the biochar and oxygen carriers

    (a): biochar; (b): biochar impregnated with nitrate; (c), (d), (e): Fe-Ni/BC; (f): NiFe2O4/SG

    图  4  载氧体的XRD谱图

    Figure  4  XRD patterns of the oxygen carriers

    图  5  NiFe2O4/SG与Fe-Ni/BC XPS谱图

    Figure  5  XPS patterns of NiFe2O4/SG and Fe-Ni/BC

    图  6  载氧体的H2-TPR谱图

    Figure  6  H2-TPR profiles of the oxygen carriers

    图  7  TG-Redox实验

    Figure  7  TG-Redox curves of the H2 reduction and air oxidation

    图  8  第一个循环过程中还原阶段气体组分变化

    Figure  8  Gas concentrations in the reduction step of the first cycle

    图  9  第一个循环过程中还原阶段气体中C保留率变化

    Figure  9  Retention rate of C in gas during the reduction step of the first cycle

    图  10  第一个循环过程中水蒸气氧化阶段气体产率及总产量

    Figure  10  Gas production rate and total output in the steam oxidation step of the first cycle

    (a): gas yield rate; (b): gas yield

    图  11  五个循环水蒸气氧化阶段的H2产量变化

    Figure  11  H2 production in the steam oxidation step of 5 cycles

    图  12  反应后载氧体的XRD谱图

    Figure  12  XRD patterns of the oxygen carriers after reaction

    (a): reduced; (b): after 5-cycle reaction

    图  13  载氧体五个与10个循环后的SEM照片

    Figure  13  SEM images of the oxygen carriers after reaction

    (a): NiFe2O4/SG after 5-cycle reaction; (b): Fe-Ni/BC after 5-cycle reaction;
    (c): NiFe2O4/SG after 10-cycle reaction; (d): Fe-Ni/BC after 10-cycle reaction

    表  1  松木及生物炭元素分析与工业分析

    Table  1  Ultimate and proximate analyses of pine and biochar

    Sample Ultimate analyses wd/% Proximate analyses wd/%
    C H N S O* V FC A
    Pine 48.8 6.68 0.06 - 44.2 82.4 17.4 0.24
    Biochar 73.0 4.39 0.25 - 21.3 32.9 66.0 1.08
    -: below detection limit; *: by difference
    下载: 导出CSV

    表  2  载氧体BET比表面积与粒径分布

    Table  2  BET specific surface area and particle size distribution of the oxygen carriers

    Sample BET specific surface area A/(m2·g-1) Particle size distribution d/μm
    d10% d50% d90%
    NiFe2O4/SG 2.38 60.3 267.8 868.2
    Fe-Ni/BC 3.28 5.8 108.9 904.8
    d10%, d50% and d90% : the equivalent diameter when the cumulative distribution in sample distribution curve was 10%, 50% and 90%, respectively
    下载: 导出CSV

    表  3  载氧体XRF分析

    Table  3  XRF data of the oxygen carriers

    Element w/% NiFe2O4/SG Fe-Ni/BC
    Fe 46.318 47.203
    O 26.794 28.329
    Ni 26.755 24.520
    Na - 0.067
    Mg - 0.192
    K - 0.048
    Ca 0.006 1.538
    P 0.002 0.081
    Si 0.030 0.073
    S 0.002 0.057
    Al 0.023 0.079
    Mn 0.007 0.059
    Cu 0.024 0.028
    Cr 0.023 -
    -: below detection limit
    下载: 导出CSV

    表  4  载氧体表面O与Fe元素XPS分析

    Table  4  XPS data of oxygen and iron on the surface of oxygen carriers

    Sample O species percentages /% OⅡ/OⅠ
    (Oads/Olatt)
    Fe species percentages /% Fe Ⅰ/ Fe Ⅱ
    OⅠ OⅡ Fe Ⅰ Fe Ⅱ
    NiFe2O4/SG 59.36 40.64 0.68 15.88 52.22 0.30
    Fe-Ni/BC 55.87 44.13 0.79 15.92 49.92 0.32
    下载: 导出CSV

    表  5  TG-Redox循环实验

    Table  5  Experimental data of TG-Redox

    Number of cycles NiFe2O4/SG Fe-Ni/BC
    ΔmR/% tR/min ΔmO/% tO/min ΔmR /% tR /min ΔmO /% tO /min
    NO.1 26.7 8.3 0.0 27.0 25.7 7.7 0.2 9.2
    NO.2 26.7 11.9 0.1 47.8 25.9 8.1 0.5 9.7
    NO.3 26.1 12.9 3.2 50.0 25.9 8.9 0.5 13.2
    NO.4 26.2 12.2 3.2 50.0 25.7 8.5 0.7 35.8
    NO.5 26.1 12.9 5.8 50.0 25.3 9.4 1.0 47.8
    NO.6 25.8 13.1 3.3 50.0 25.4 10.1 1.4 47.9
    NO.7 26.3 13.2 8.7 50.0 25.6 13.1 2.3 48.0
    NO.8 26.0 14.3 5.6 50.0 25.2 13.4 2.4 48.9
    NO.9 26.6 12.7 10.7 50.0 25.4 13.8 2.5 50.0
    NO.10 26.0 15.2 5.9 50.0 25.5 14.6 3.7 50.0
    ΔmR: maximum weight loss rate; tR: the time to maximum weight loss rate;ΔmO: maximum oxidizing weight loss rate; tO: the time to maximum oxidizing weight loss rate
    下载: 导出CSV
  • [1] RICHTER H J. Reversibility of combustion processes[J]. Acs Sym Ser, 1983, 235:71-85. doi: 10.1021/symposium
    [2] NANDY A, LOHA C, GU S, SARKAR P, KARMAKAR M K, CHATTERJEE P K. Present status and overview of chemical looping combustion technology[J]. Renewable Sustainable Energy Rev, 2016, 59:597-619. doi: 10.1016/j.rser.2016.01.003
    [3] FAN L, ZENG L, LUO S. Chemical-looping technology platform[J]. AlChE J, 2015, 61(1):2-22. doi: 10.1002/aic.14695
    [4] GUPTA P, AND V V, FAN L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy Fuels, 2007, 21(5):2900-2908. doi: 10.1021/ef060512k
    [5] CHIESA P, LOZZA G, MALANDRINO A, ROMANO M, PICCOLO V. Three-reactors chemical looping process for hydrogen production[J]. Int J Hydrogen Energy, 2008, 33(9):2233-2245. doi: 10.1016/j.ijhydene.2008.02.032
    [6] ADANEZ J, ABAD A, GARCIA-LABIANO F, GAYAN P, DIEGO L D. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust, 2012, 38(2):215-282. doi: 10.1016/j.pecs.2011.09.001
    [7] CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83(9):1215-1225. doi: 10.1016/j.fuel.2003.11.013
    [8] RYDÉN M, LEION H, MATTISSON T, LYNGFELT A. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling[J]. Appl Energy, 2014, 113:1924-1932. doi: 10.1016/j.apenergy.2013.06.016
    [9] MATTISSON T, JOHANSSON M, LYNGFELT A. Multicycle reduction and oxidation of different types of iron oxide particles-Application to chemical-looping combustion[J]. Energy Fuels, 2004, 18(3):628-637. doi: 10.1021/ef0301405
    [10] ZAFAR Q, MATTISSON T, GEVERT B. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4[J]. Energy Fuels, 2006, 20(1):34-44. doi: 10.1021/ef0501389
    [11] HAFIZI A, RAHIMPOUR M R, HASSANAJILI S. High purity hydrogen production via sorption enhanced chemical looping reforming:Application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent[J]. Appl Energy, 2016, 169:629-641. doi: 10.1016/j.apenergy.2016.02.068
    [12] 刘帅, 黄振, 何方, 郑安庆, 沈阳, 李海滨.NiFe2O4为载氧体的生物质半焦化学链燃烧热力学模拟研究[J].新能源进展, 2016, 4(3):172-178. http://subject.wanfangdata.com.cn/xstjbg/2010/dl2.html

    LIU Shuai, HUANG Zhen, HE Fang, ZHENG An-qing, SHEN Yang, LI Hai-bin. Thermodynamic analysis of biomass char chemical looping combustion with NiFe2O4 as oxygen carrier[J]. Adv New Renew Energy, 2016, 4(3):172-178. http://subject.wanfangdata.com.cn/xstjbg/2010/dl2.html
    [13] KANG K S, KIM C H, BAE K K, CHO W C, KIM S H, PARK C S. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. Int J Hydrogen Energy, 2010, 35(22):12246-12254. doi: 10.1016/j.ijhydene.2010.08.043
    [14] LI F, KIM H R, SRIDHAR D, WANG F, ZENG L, CHEN J, FAN L S. Syngas chemical looping gasification process:Oxygen carrier particle selection and performance[J]. Energy Fuels, 2009, 23(8):4182-4189. doi: 10.1021/ef900236x
    [15] BOHN C D, CLEETON J P, MVLLER C R, CHUANG S Y, SCOTT S A, DENNIS J S. Stabilizing iron oxide used in cycles of reduction and oxidation for hydrogen production[J]. Energy Fuels, 2010, 24(7):4025-4033. doi: 10.1021/ef100199f
    [16] LIU W, DENNIS J S, SCOTT S A. The effect of addition of ZrO2 to Fe2O3 for hydrogen production by chemical looping[J]. Ind Eng Chem Res, 2012, 51(51):16597-16609. doi: 10.1021/ie302626x
    [17] LIU S, HE F, HUANG Z, ZHENG A, FENG Y, SHEN Y, LI H, WU H, GLARBORG P. Screening of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production[J]. Energy Fuels, 2016, 30(5):4251-4262. doi: 10.1021/acs.energyfuels.6b00284
    [18] 梅道锋, 赵海波, 马兆军, 郑楚光. Fe2O3/Al2O3氧载体制备方法的研究[J].燃料化学学报, 2012, 40(7):795-802. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201207007&dbname=CJFD&dbcode=CJFQ

    MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, ZHENG Chu-guang. Preparation method study on Fe2O3/Al2O3 oxygen carrier[J]. J Fuel Chem Technol, 2012, 40(7):795-802. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201207007&dbname=CJFD&dbcode=CJFQ
    [19] 刘自松, 魏永刚, 李孔斋, 王华, 祝星, 杜云鹏. Fe2O3/Al2O3氧载体用于甲烷化学链燃烧:负载量与制备方法的影响[J].燃料化学学报, 2013, 41(11):1384-1392. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201311019&dbname=CJFD&dbcode=CJFQ

    LIU Zi-song, WEI Yong-gang, LI Kong-zhai, WANG Hua, ZHU Xing, DU Yun-peng. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane:Influence of Fe2O3 loadings and preparation methods[J]. J Fuel Chem Technol, 2013, 41(11):1384-1392. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201311019&dbname=CJFD&dbcode=CJFQ
    [20] NEAL L, SHAFIEFARHOOD A, LI F. Effect of core and shell compositions on MeOx@LaySr1-yFeO3 core-shell redox catalysts for chemical looping reforming of methane[J]. Appl Energy, 2015, 157:391-398. doi: 10.1016/j.apenergy.2015.06.028
    [21] SHAFIEFARHOOD A, GALINSKY N, HUANG A Y, CHEN Y, LI A F. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem, 2014, 6(3):790-799. doi: 10.1002/cctc.201301104
    [22] ZHAO K, HE F, HUANG Z, ZHENG A, LI H, ZHAO Z. Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane[J]. Int J Hydrogen Energy, 2014, 39(7):3243-3252. doi: 10.1016/j.ijhydene.2013.12.046
    [23] HE F, ZHAO K, ZHEN H, LI X A, WEI G Q, LI H B. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chin J Catal, 2013, 34(6):1242-1249. doi: 10.1016/S1872-2067(12)60563-4
    [24] QIAN K Z, KUMAR A, ZHANG H L, BELLMER D, HUHNKE R. Recent advances in utilization of biochar[J]. Renewable Sustainable Energy Rev, 2015, 42(1):1055-1064. https://www.sciencedirect.com/science/article/pii/S1364032114008995
    [25] LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable Sustainable Energy Rev, 2017, 77:70-79. doi: 10.1016/j.rser.2017.04.002
    [26] 陆海楠, 胡学玉, 刘红伟.不同裂解条件对生物炭稳定性的影响[J].环境科学与技术, 2013, 36(8):11-14. http://www.doc88.com/p-4059054897328.html

    LU Hai-nan, HU Xue-yu, LIU Hong-wei. Influence of pyrolysis conditions on stability of biochar[J]. Environ Sci Technol, 2013, 36(8):11-14. http://www.doc88.com/p-4059054897328.html
    [27] 简敏菲, 高凯芳, 余厚平.不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J].环境科学学报, 2016, 36(5):1757-1765. https://www.wenkuxiazai.com/doc/32d9431626fff705cd170ac6-3.html

    JIAN Min-fei, GAO Kai-fang, YU Hou-ping. Effects of different pyrolysis temperatures on the preparation and characteristics of biochar from rice straw[J]. J Environ Sci, 2016, 36(5):1757-1765. https://www.wenkuxiazai.com/doc/32d9431626fff705cd170ac6-3.html
    [28] UCHIMIYA M, WARTELLE L H, KLASSON K T, FORTIER C A, LIMA I M. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. J Agr Food Chem, 2011, 59(6):2501-2510. doi: 10.1021/jf104206c
    [29] AHMAD M, RAJAPAKSHA A U, LIM J E, ZHANG M, BOLAN N, MOHAN D, VITHANAGE M, LEE S S, OK Y S. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33. doi: 10.1016/j.chemosphere.2013.10.071
    [30] UCHIMIYA M, LIMA I M, KLASSON K T, WARTELLE L H. Contaminant immobilization and nutrient release by biochar soil amendment:Roles of natural organic matter[J]. Chemosphere, 2010, 80(8):935-940. doi: 10.1016/j.chemosphere.2010.05.020
    [31] UCHIMIYA M, KLASSON K T, WARTELLE L H, LIMA I M. Influence of soil properties on heavy metal sequestration by biochar amendment:1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10):1431-1437. doi: 10.1016/j.chemosphere.2010.11.050
    [32] FAHMI R, BRIDGWATER A V, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of lolium and festuca grasses, switch grass and willow[J]. Fuel, 2007, 86(10/11):1560-1569. https://www.sciencedirect.com/science/article/pii/S0016236106004789
    [33] BUELENS L C, GALVITA V V, POELMAN H, DETAVERNIER C, MARIN G B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Sci, 2016, 354(6311):449-452. doi: 10.1126/science.aah7161
    [34] FLORIN N H, HARRIS A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chem Eng Sci, 2008, 63(2):287-316. doi: 10.1016/j.ces.2007.09.011
    [35] WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catal Commun, 2008, 9(13):2158-2162. doi: 10.1016/j.catcom.2008.04.021
    [36] SHEN Y F, ZHAO P, SHAO Q, MA D, TAKAHASHI F, YOSHIKAWA K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Appl Catal B:Environ, 2014, 152:140-151. https://www.sciencedirect.com/science/article/pii/S0306261914011246
    [37] ZHENG Y, LI K, WANG H, TIAN D, WANG Y, ZHU X, WEI Y, ZHENG M, LUO Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl Catal B:Environ, 2017, 202:51-63. doi: 10.1016/j.apcatb.2016.08.024
    [38] BENRABAA R, LÖFBERG A, RUBBENS A, BORDES-RICHARD E, VANNIER R N, BARAMA A. Structure, reactivity and catalytic properties of nanoparticles of Nickel ferrite in the dry reforming of methane[J]. Catal Today, 2013, 203(5):188-195. https://www.sciencedirect.com/science/article/pii/S0920586112004191
    [39] CHAMOUMI M, ABATZOGLOU N. NiFe2O4 production from α-Fe2O3 via improved solid state reaction:Application as catalyst in CH4 dry reforming[J]. Can J Chem Eng, 2016, 94(9):1801-1808. doi: 10.1002/cjce.v94.9
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  48
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-03-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回