留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeOx quaternary system

WANG Cai-hong LIN Xiong-chao YANG Sa-sha LIU Shu-qin YOON Seongho WANG Yong-gang

王彩红, 林雄超, 杨萨莎, 刘淑琴, YOONSeongho, 王永刚. 利用SiO2-Al2O3-CaO-FeOx四元体系评价煤中矿物质的热及流变特性研究[J]. 燃料化学学报(中英文), 2016, 44(9): 1025-1033.
引用本文: 王彩红, 林雄超, 杨萨莎, 刘淑琴, YOONSeongho, 王永刚. 利用SiO2-Al2O3-CaO-FeOx四元体系评价煤中矿物质的热及流变特性研究[J]. 燃料化学学报(中英文), 2016, 44(9): 1025-1033.
WANG Cai-hong, LIN Xiong-chao, YANG Sa-sha, LIU Shu-qin, YOON Seongho, WANG Yong-gang. Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeOx quaternary system[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1025-1033.
Citation: WANG Cai-hong, LIN Xiong-chao, YANG Sa-sha, LIU Shu-qin, YOON Seongho, WANG Yong-gang. Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeOx quaternary system[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1025-1033.

利用SiO2-Al2O3-CaO-FeOx四元体系评价煤中矿物质的热及流变特性研究

基金项目: 

the National Natural Science Foundation of China 21406261

详细信息
  • 中图分类号: TQ530.2

Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeOx quaternary system

Funds: 

the National Natural Science Foundation of China 21406261

More Information
    Corresponding author: LIN Xiong-chao, Tel: +86-10-6233-1048, E-mail: linxiongchao@163. com
  • 摘要: 利用SiO2-Al2O3-CaO-FeOx四元体系研究了煤中矿物质热和黏温特性规律。利用热机械分析、差热、X射线衍射和热力学模拟以及高温旋转黏度计分析了矿物质的高温演化、反应和黏温特性(1 700℃到固化温度)。结果表明,热机械分析和差热可以较好地在线考察矿物质高温特性。二氧化硅和氧化铝从低温矿物转变成高温形态,表现出稳定的结构和高黏度;另一方面,加入氧化钙或氧化铁可以起到助熔剂的作用,显著加快二氧化硅和氧化铝的反应和转化并降低黏度。氧化亚铁相比氧化铁和四氧化三铁表现出更明显的降低黏度的作用,而氧化铁还原成金属将显著提高体系黏度。三价铁离子与铝类似,可构成网架结构。另外,氧化铁在弱还原或高温下将产生部分二价铁离子对网架机构进行调整。氧化钙的存在可以加强四元体系中氧化铁的溶解能力,进而降低黏度。
  • Figure  1  Schematic diagram of high temperature rotary viscometer for viscosity measurement

    Figure  2  TMA analyses of mineral transformations in SiO2-Al2O3-CaO-FeOx quaternary system

    Figure  3  DSC analyses of mineral reactions in SiO2-Al2O3-CaO-Fe2O3 quaternary system

    Figure  4  Phase diagram of the Al2O3+SiO2+CaO+“Fe2O3” system with SiO2/Al2O3(mol ratio)=0.8/0.2 showing the phase compositions and equilibrium of the minerals used in this investigation

    Figure  5  Apparent viscosities vs. temperature of samples at cooling cycle

    Figure  6  XRD patterns of S01-S03 after viscosity measurement

    C: 74-1081# corundum-Al2O3; A: 82-1584# aluminum iron oxide-Al3Fe5O12; H: 24-0072# hematite-Fe2O3; Cr: 85-0621# cristobalite, syn-SiO2; M: 15-0776# mullite-Al6Si2O13; Ca: 72-0767# calcium aluminum oxide-CaAl4O7; P: 74-0874# pseudowollastonite-Ca3(Si3O9)

    Figure  7  XRD patterns of S04-S07 after viscosity measurement

    A: 41-1486# anorthite-CaAl2Si2O; M: 39-1346# maghemite-Fe2O3; H: 70-1876# hedenbergite-Fe1.3CaO0.7(Si2O6); I: 77-2355# FeO-iron oxide

    Figure  8  XRD patterns of S08-S11 after viscosity measurement

    M: 15-0776# mullite-Al6Si2O13; Ma: 75-0449# magnetite-Fe3O4; I: 80-1625# iron silicate-Fe2(SiO4)

    Table  1  Composition in SiO2-Al2O3-CaO-FeOx quaternary system (as equivalent oxide)

    Sample Composition w/% Mol ratio
    SiO2 Al2O3 CaO Al2O3-crucible C-cruciblea SiO2/Al2O3 B/Ab
    Fe2O3 Fe3O4 FeO Fe2O3
    S01 65.36 34.64 - - - - - 1.89 0.00
    S02 49.29 26.09 - 24.62 - - - 1.89 0.33
    S03 49.18 25.98 24.83 - - - - 1.89 0.33
    S04 39.52 20.89 19.94 19.65 - - - 1.89 0.66
    S05 39.78 21.02 20.07 - 19.13 - - 1.89 0.66
    S06 40.31 21.31 20.34 - - 18.04 - 1.89 0.66
    S07 39.52 20.89 19.94 - - - 19.65 1.89 0.66
    S08 39.78 21.02 8.25 30.94 - - - 1.89 0.64
    S09 40.19 21.24 8.34 - 30.22 - - 1.89 0.64
    S10 41.05 21.70 8.52 - - 28.74 - 1.89 0.64
    S11 39.78 21.02 8.25 - - - 30.94 1.89 0.64
    a C-crucible was used to simulate the reduction atmosphere, Fe2O3 was reduced to iron metallic particles during measurement; b base/acid ratio (base=w(Fe2O3)+w(CaO), acid=w(SiO2)+w(Al2O3)), where only four analytical compounds were calculated, and the FeO, Fe3O4 were normalized to the Fe2O3
    下载: 导出CSV
  • [1] ELLIOTT L. Dissolution of lime into synthetic coal ash slags[J]. Fuel Process Technol, 1998, 56(56): 45-53. https://www.researchgate.net/publication/257211144_Dissolution_of_lime_into_synthetic_coal_ash_slags
    [2] NOWOK J W, BENSON S A, STEADMAN E N, BREKKE D W. The effect of surface-tension viscosity ratio of melts on the sintering propensity of amorphous coal ash slags[J]. Fuel, 1993, 72(7): 1055-1061. doi: 10.1016/0016-2361(93)90308-O
    [3] HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel, 1999, 78(15): 1831-1840. doi: 10.1016/S0016-2361(99)00094-0
    [4] CHAKRABORTY S, SARKAR S, GUPTA S, RAY A. Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system[J]. Proc Inst Mech Eng Part A, 2008, 222(8): 791-807. doi: 10.1243/09576509JPE638
    [5] BRYANT G W, MCLENNAN A R, BAILEY C W, STANMORE B R, WALL T F. Index for iron-based slagging for pulverized coal firing in oxidizing and reducing conditions[J]. Energy Fuels, 2000, 14(2): 349-354. doi: 10.1021/ef990127d
    [6] HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999, 78(4): 439-444. doi: 10.1016/S0016-2361(98)00162-8
    [7] HUFFMAN G P, HUGGINS F E, DUNMYRE G R. Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmospheres[J]. Fuel, 1981, 60(7): 585-597. doi: 10.1016/0016-2361(81)90158-7
    [8] WU H W, WEE H L, ZHANG D K, FRENCH D. The effect of combustion conditions on mineral matter transformation and ash deposition in a utility boiler fired with a sub-bituminous coal[J]. Proc Combust Inst, 2005, 30(2): 2981-2989. doi: 10.1016/j.proci.2004.08.059
    [9] RUPRECHT P, KONKOL W, CORNILS B, LANGHOFF J, BRUNKE W, SCHAFER W. Slagging gasification of coal under addition of flux agents[J]. Fuel Process Technol, 1985, 11(1): 1-12. doi: 10.1016/0378-3820(85)90011-6
    [10] GROEN J C, BROOKER D D, WELCH P J, OH M S. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses[J]. Fuel Process Technol, 1998, 56(1/2): 103-127. https://www.researchgate.net/publication/223857658_Gasification_slag_rheology_and_crystallization_in_titanium-rich_iron-calcium-aluminosilicate_glasses
    [11] LIN X C, IDETA K, MIYAWAKI J, TAKEBE H, YOON S H, MOCHIDA I. Correlation between fluidity properties and local structures of three typical asian coal ashes[J]. Energy Fuels, 2012, 26(4): 2136-2144. doi: 10.1021/ef201771f
    [12] BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4): 583-591. https://www.researchgate.net/publication/229181317_Characterization_of_low-temperature_coal_ash_behaviors_at_high_temperatures_under_reducing_atmosphere
    [13] AIKIN T L H, CASHION J D, OTTREY A L. Mossbauer analysis of iron phases in brown coal ash and fireside deposits[J]. Fuel, 1984, 63(9): 1269-1275. doi: 10.1016/0016-2361(84)90436-8
    [14] MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during of combustion in reducing conditions[J]. Energy Fuels, 2000, 14(1): 150-159. doi: 10.1021/ef990095u
    [15] SCHOTTE E, LORENZ H, RAU H. Investigating gasification processes of solid fuels by in situ gaspotentiometric oxygen probes[J]. Chem Eng Technol, 2003, 26(7): 774-778. doi: 10.1002/ceat.200301667
    [16] SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009, 23(4): 1990-1997. doi: 10.1021/ef800974d
    [17] WALL T F, LOWE A, WIBBERLEY L J, STEWART I M. Mineral matter in coal and the thermal performance of large boilers[J]. Prog Energy Combust Sci, 1979, 5(1): 1-29. doi: 10.1016/0360-1285(79)90017-0
    [18] LLOYD W G, RILEY J T, ZHOU S, RISEN M A, TIBBITTS R L. Ash fusion temperatures under oxidizing conditions[J]. Energy Fuels, 1993, 7(4): 490-494. doi: 10.1021/ef00040a009
    [19] BRYANT G W, MCLENNAN A R, BAILEY C W, STANMORE B R, WALL T F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy Fuels, 2000, 14(2): 308-315. doi: 10.1021/ef990092h
    [20] URBAIN G, BOTTINGA Y, RICHET P. Viscosity of liquid silica, silicates and alumino-silicates[J]. Geochim Cosmochim Acta, 1982, 46(6): 1061-1072. https://www.researchgate.net/publication/223381209_Viscosity_of_liquid_silica_silicates_and_alumino-silicates
    [21] ARVELAKIS S, JENSEN P A, DAM-JOHANSEN M. Simultaneous thermal analysis (STA) on ash from high-alkali biomass[J]. Energy Fuels, 2004, 18(4): 1066-1076. doi: 10.1021/ef034065+
    [22] PINTO R R C, VALLE M L M, SOUSA-AGUIAR E F. The influence of silica to alumina ratio on Y zeolite activity by simultaneous TG and DSC analysis[J]. J Thermal Anal Calorim, 2002, 67(2): 439-443(5). doi: 10.1023/A:1013976512286
    [23] GUO X H, ZHONG S L, ZHANG J, WANG W, MAO J J, XIE G. Synthesis, phase transition, and magnetic property of iron oxide materials: Effect of sodium hydroxide concentrations[J]. J Mater Sci, 2010, 45(23): 6467-6473. doi: 10.1007/s10853-010-4733-8
    [24] EBSWORTH E A V, WEIL J A. Paramagnetic resonance absorption in peroxydicobalt complexes[J]. J Phys Chem, 2002, 63(11): 1890-1900.
    [25] RISTIĆ M, POPOVIĆ S, MUSIĆ S. Investigation of crystalline phases in the alpha-Fe2O3/alpha-Al2O3 system[J]. Croat Chem Acta, 2009, 82(2): 397-404.
    [26] NOWOK J W, HURLEY J P, STANLEY D C. Local structure of a lignitic coal ash slag and its effect on viscosity[J]. Energy Fuels, 1993, 7(6): 1135-1140. doi: 10.1021/ef00042a063
    [27] EBNER A D, RITTER J A, Retention of iron oxide particles by stainless steel and magnetite magnetic matrix elements in high-gradient magnetic separation[J]. Sep Sci Technol, 2004, 39(12): 2863-2890. doi: 10.1081/SS-200028811
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  20
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-13
  • 修回日期:  2016-07-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-09-10

目录

    /

    返回文章
    返回