留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米片层二硫化钼负载PtCo双金属催化甲醇水相重整制氢

刘洋 朱善辉 李俊汾 秦张峰 樊卫斌 王建国

刘洋, 朱善辉, 李俊汾, 秦张峰, 樊卫斌, 王建国. 纳米片层二硫化钼负载PtCo双金属催化甲醇水相重整制氢[J]. 燃料化学学报(中英文), 2019, 47(7): 799-805.
引用本文: 刘洋, 朱善辉, 李俊汾, 秦张峰, 樊卫斌, 王建国. 纳米片层二硫化钼负载PtCo双金属催化甲醇水相重整制氢[J]. 燃料化学学报(中英文), 2019, 47(7): 799-805.
LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 799-805.
Citation: LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 799-805.

纳米片层二硫化钼负载PtCo双金属催化甲醇水相重整制氢

基金项目: 

国家自然科学基金 21878321

详细信息
  • 中图分类号: O643.36

Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen

Funds: 

the National Natural Science Foundation of China 21878321

More Information
  • 摘要: 采用水热法合成了层数只有六层的纳米片层二硫化钼(MoS2),并进一步负载Pt和PtM双金属(M=Ru、Pd、Co和Ni),用于催化甲醇水相重整制氢反应。结果表明,PtCo/MoS2对于甲醇水相重整具有最优异的催化性能,在220℃下产氢转换频率(TOF)为37142 h-1。氮气吸附-脱附等温线、透射电子显微镜(TEM)、程序升温还原(H2-TPR)以及X射线光电子能谱(XPS)等表征结果表明,PtCo/MoS2中金属还原程度高,且Pt与载体MoS2形成了强电子相互作用,使缺电子的Pt有利于吸附活化甲醇,并进一步促进甲醇重整反应。
  • 图  1  (a) 纳米片层MoS2的XRD谱图;(b)纳米片层MoS2的SEM照片;(c)纳米片层MoS2的TEM照片

    Figure  1  (a) XRD patterns of the nanosheets MoS2; (b) SEM image of the nanosheets MoS2; (c) TEM image of the nanosheets MoS2

    图  2  纳米片层MoS2负载双金属催化剂的XRD谱图

    Figure  2  XRD patterns of the nanosheets MoS2 supported bimetallic catalysts

    图  3  纳米片层MoS2负载双金属催化剂的TEM照片

    Figure  3  TEM images of the nanosheets MoS2 supported bimetallic catalysts

    (a): PtRu/MoS2; (b): PtPd/MoS2; (c): PtCo/MoS2; (d): PtNi/MoS2

    图  4  纳米片层MoS2负载双金属催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of the nanosheets MoS2 supported bimetallic catalysts

    图  5  纳米片层MoS2负载双金属催化剂中Pt 4f的XPS谱图

    Figure  5  Pt 4f XPS profiles of the nanosheets MoS2 supported bimetallic catalysts

    图  6  PtCo/MoS2的稳定性评价

    Figure  6  Stability test of the PtCo/MoS2 catalyst

    表  1  不同金属催化剂的催化性能及反应条件的优化

    Table  1  Performance of the catalysts under the optimized reaction conditions

    Entry Catalyst Pt loading w/% ABET /(m2·g-1) Temperature t/ ℃ TOF (mol H2 per mol Pt per hour) NaOH m/g
    1 Pt/MoS2 0.2 37.2 190 860 0.0
    2 Pd/MoS2 0.2 - 190 23 0.0
    3 Ru/MoS2 0.2 - 190 701 0.0
    4 Pt/MoS2 0.2 37.2 220 3054 0.0
    5 Pt/MoS2 0.2 37.2 220 8057 0.1
    6 Pt/MoS2 0.2 37.2 220 11217 0.3
    reaction conditions: 1 h, 0.1 g catalyst, 15 g mixture of methanol and water(n(CH3OH):n(H2O)=1:3), 2 MPa N2
    下载: 导出CSV

    表  2  纳米片层MoS2负载双金属催化剂的性能评价

    Table  2  Evaluation results of nanosheets MoS2 supported catalysts with different bimetal loadings

    Entry Catalyst ABET/ (m2·g-1) Temperature t/℃ TOF (mol H2 per mol Pt per hour)
    1 PtRu/MoS2 27.0 220 23360
    2 PtPd/MoS2 24.5 220 18162
    3 PtCo/MoS2 26.7 220 37142
    4 PtNi/MoS2 26.1 220 17800
    reaction conditions: 1 h, 0.1 g catalyst, 15 g mixture of methanol and water(n(CH3OH):n(H2O) =1:3), 2 MPa N2
    下载: 导出CSV
  • [1] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature, 2001, 414:332-337. doi: 10.1038/35104599
    [2] VAN DEN BERG A W C, AREAN C O. Materials for hydrogen storage:Current research trends and perspectives[J]. Chem Commun, 2008, 6:668-681.
    [3] STEELE B H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414:345-352. doi: 10.1038/35104620
    [4] SCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414:353-358. doi: 10.1038/35104634
    [5] AMPHLETT J C, CREBER K A M, DAVIS J M, MANN R F, PEPPLEY B A, STOKES D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. Int J Hydrogen Energy, 1994, 19(2):131-137. doi: 10.1016/0360-3199(94)90117-1
    [6] DAVID W I F, MAKEPEACE J W, CALLEAR S K, HUNTER H M A, TAYLOR J D, WOOD T J, JONES M O. Hydrogen production from ammonia using sodium amide[J]. J Am Chem Soc, 2014, 136:13082-13085. doi: 10.1021/ja5042836
    [7] YU K M K, TONG W, WEST A, CHEUNG K, LI T, SMITH G, GUO Y, TASNG S C. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature[J]. Nat Commun, 2012, 3:1230. doi: 10.1038/ncomms2242
    [8] SONG C. Fuel processing for low-temperature and high-temperature fuel cells:challenges and opportunities for sustainable development in the 21st century[J]. Catal Today, 2002, 77(1/2):17-49.
    [9] DENG Z, FERREIRA J M F, SAKKA Y. Hydrogen-generation materials for portable applications[J]. J Am Chem Soc, 2008, 91(12):3825-3834.
    [10] CORTRIGHT R D, DAVADA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418:964-967. doi: 10.1038/nature01009
    [11] 张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯.甲醇水蒸气重整制氢反应条件的优化[J].燃料化学学报, 2013, 41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019

    ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. J Fuel Chem Technol, 2013, 41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019
    [12] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [13] 杨淑倩, 刘玉娟, 刘进博, 房明明, 肖国鹏, 张磊, 陈琳, 苑兴洲, 张健.焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn-Al水滑石衍生催化剂的影响.[J].燃料化学学报, 2018, 46(12):1482-1490. doi: 10.3969/j.issn.0253-2409.2018.12.009

    YANG Shu-qian, LIU Yu-juan, LIU Jin-bo, FANG Ming-ming, XIAO Guo-peng, ZHANG Lei, CHEN Lin, YUAN Xing-zhou, ZHANG Jian. Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(12):1482-1490. doi: 10.3969/j.issn.0253-2409.2018.12.009
    [14] LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, SHIOZAKI R, ISHⅡ T, KUMAGAI M. Steam reforming of methanol over Cu=CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003, 22(3/4):205-213. doi: 10.1023/A:1023519802373
    [15] BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications:Development of zirconia-containing Cu-Zn-Al catalysts[J]. Catal Today, 1999, 51(3/4):521-533.
    [16] YFANTIA V L, VASILIADOU E S, LEMONIDOU A A. Glycerol hydro-deoxygenation aided by in situ H2 generation via methanol aqueous phase reforming over a Cu-ZnO-Al2O3 catalyst[J]. Catal Sci Technol, 2016, 6:5415-5426. doi: 10.1039/C6CY00132G
    [17] LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, JIANG Z, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-83. doi: 10.1038/nature21672
    [18] PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chem Rev, 2001, 107(10):3992-4021. doi: 10.1016-j.jpowsour.2006.04.091/
    [19] NIELSEN M, ALBERICO E, BAUMANN W, DREXLER H, JUNGE H, GLADIALI S, BELLER M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide[J]. Nature, 2013, 495:85-89. doi: 10.1038/nature11891
    [20] HUANG X, ZENG Z, ZHANG H. Metal dichalcogenide nanosheets:Preparation, properties and applications[J]. Chem Soc Rev, 2013, 42(5):1934-1946. doi: 10.1039/c2cs35387c
    [21] LAURSEN A B, KEGNAES S, DAHL S, CHORKENDORFF T. Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution[J]. Energy Environ Sci, 2012, 5(2):5577-5591. doi: 10.1039/c2ee02618j
    [22] MERKI D, HU X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ Sci, 2011, 4(10):3878-3888. doi: 10.1039/c1ee01970h
    [23] VRUBEL H, MERKI D, HU X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles[J]. Energy Environ Sci, 2012, 5(3):6136-6144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44a53a86f05a86745d11b2338fff6d64
    [24] WANG T, LIU L, ZHU Z, PAPAKONSTANTINOU P, HU J, LIU H, LI M. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticleson an Au electrode[J]. Energy Environ Sci, 2013, 6(2):625-633
    [25] LI Y, WANG H, XIE L, LIANG Y, HONG G, DAI H. MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011, 133:7296-7299. doi: 10.1021/ja201269b
    [26] CHE Z, CUMMINS D, REINECKE B N, CLARK E, SUNKARA M, JARAMILLO T. Core-shell MoO3-MoS2 nanowires for hydrogen evolution:A functional design for electrocatalytic materials[J]. Nano Lett, 2011, 11:4168-4175. doi: 10.1021/nl2020476
    [27] CHANG K, HAI X, PANG H, ZHANG H, SHI L, LIU G, LIU H, ZHAO G, LI M, YE J. Targeted synthesis of 2H-and 1T-Phase MoS2 monolayers for catalytic hydrogen evolution[J]. Adv Mater, 2016, 28:10033-10041. doi: 10.1002/adma.201603765
    [28] BENCK J D, CHEN Z, KURITZKY L Y, FORMAN A J, JARAMILLO T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production:Insights into the origin of their catalytic activity[J]. ACS Catal, 2012, 2(9):1916-1923. doi: 10.1021/cs300451q
    [29] LAURSEN A B, VESBORG P C K, CHORKENDORFF I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability[J]. Chem Commun, 2013, 49(43):4965-4967. doi: 10.1039/c3cc41945b
    [30] CHANG Y H, LIN C T, CHEN T Y, HSU C, LEE Y, ZHANG W, WEI K, LI L. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams[J]. Adv Mater, 2013, 25:756-760. doi: 10.1002/adma.201202920
    [31] MERKI D, FIERRO S, VRUBEL H, HU X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water[J]. Chem Sci, 2011, 2(7):1262-1267. doi: 10.1039/C1SC00117E
    [32] XIE J, ZHANG H, LI S, WANG R, SUN X, ZHOU M, ZHOU J, KOU X, XIE Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv Mater, 2013, 25(40):5807-5813. doi: 10.1002/adma.v25.40
    [33] XIE J, WU C, HU S, DAI J, ZHANG N, FENG J, YANG J, XIE Y. Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior[J]. Phys Chem Chem Phys, 2012, 14(14):4810-4816. doi: 10.1039/c2cp40409e
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  58
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-04-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回