留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2

LI Xiao-ming ZHANG Hong LIU Meng-jie ZHI Li-fei BAI Jin BAI Zong-qing LI Wen

李晓明, 张红, 刘梦杰, 智丽飞, 白进, 白宗庆, 李文. 采用焦分离方法研究共热解时煤与生物质的相互作用及对焦结构和CO2气化反应性的影响[J]. 燃料化学学报(中英文), 2020, 48(8): 897-907.
引用本文: 李晓明, 张红, 刘梦杰, 智丽飞, 白进, 白宗庆, 李文. 采用焦分离方法研究共热解时煤与生物质的相互作用及对焦结构和CO2气化反应性的影响[J]. 燃料化学学报(中英文), 2020, 48(8): 897-907.
LI Xiao-ming, ZHANG Hong, LIU Meng-jie, ZHI Li-fei, BAI Jin, BAI Zong-qing, LI Wen. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 897-907.
Citation: LI Xiao-ming, ZHANG Hong, LIU Meng-jie, ZHI Li-fei, BAI Jin, BAI Zong-qing, LI Wen. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 897-907.

采用焦分离方法研究共热解时煤与生物质的相互作用及对焦结构和CO2气化反应性的影响

基金项目: 

Natural Science Foundation of Shanxi Province 201801D121050

Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province 2017006

Shanxi Scholarship Council of China 2017-086

Natural Science Foundation of China and Xinjiang Province U1703252

详细信息
  • 中图分类号: TQ54

Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2

Funds: 

Natural Science Foundation of Shanxi Province 201801D121050

Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province 2017006

Shanxi Scholarship Council of China 2017-086

Natural Science Foundation of China and Xinjiang Province U1703252

More Information
  • 摘要: 煤与生物质的相互作用已被广泛研究。但是,其相互作用机制通常是基于混合焦样的物理化学结构和反应性而提出。在这项工作中,基于不同形状和粒度将无烟煤与生物质共热解后的混合焦分离,然后通过分析分离后煤焦的结构和反应性来揭示煤与生物质相互作用机制。在热解温度为600和900℃条件下,在固定床反应器中制备了混合有不同比例的秸秆(CS)的无烟煤焦样。采用了电感耦合等离子体发射光谱法(ICP-OES)和X射线衍射(XRD)对煤焦的AAEM浓度和微晶结构进行了检测。利用TGA设备分析了分离后的煤焦与CO2的气化反应性。结果表明,随着掺混比例从0增加到80%,煤焦中活性K和Mg的浓度逐渐增加,并形成更为无序的碳结构。共热解过程中,更多的AAEM种类被混合物中的煤焦通过挥发分-焦相互作用捕获,而不是随生物质挥发分逸出。同时,热解温度的升高引起了K和Na挥发和失活,也导致石墨化度的降低。而且,CS的添加和更低的热解温度均可提高煤焦的气化反应性。此外,在煤焦的碱性指数AI与反应性指数R0.5之间建立了较好的线性关系(R2=0.9009),表明在煤与生物质共气化过程中,AAEMs对提高煤焦气化反应活性起主导作用。
  • Figure  2  Curve-fitting XRD spectrum for 002 peak of various resulting chars

    Figure  1  XRD patterns of different char samples at a pyrolysis temperature of (a) 600 ℃ and (b) 900 ℃

    Figure  3  Carbon conversion versus reaction time of char samples at a pyrolysis temperature of (a) 600 ℃ and (b) 900 ℃

    Figure  4  Carbon conversion and reaction rate of char samples at a pyrolysis temperature of (a) 600 ℃ and (b) 900 ℃

    Figure  5  (a) Gasification reactivity index and (b) specific reactivity of char samples

    Figure  6  Correlation between R0.5 and microcrystalline parameters of char samples

    (a): R0.5 and Lc, a of all char samples; (b): R0.5 and N of all char samples; (c): R0.5 and Lc, a of chars where the abnormal sample was removed; (d): R0.5 and N of chars where the abnormal sample was removed

    Figure  7  Correlation between R0.5 and AI of char samples

    Table  1  Proximate and ultimate analyses of raw materials

    Sample Proximate analysis w/%   Ultimate analysis wdaf/% St, d
    Mad Ad Vdaf FCd   C H Oa N
    AC 0.80 25.19 14.00 64.33   89.52 4.02 4.42 1.59 0.34
    CS 4.98 5.01 80.58 18.45   48.53 5.64 45.17 0.47 0.19
    ad: air dried basis, d: dry-basis, daf: dry ash-free basis, a: by difference
    下载: 导出CSV

    Table  2  Chemical compositions of AC ash and CS ash

    Sample Content w/%
    SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 K2O P2O5 Na2O
    AC ash 49.11 29.02 12.04 3.91 0.50 2.36 1.91 0.52 0.12 0.51
    CS ash 27.01 0.86 0.43 7.95 12.01 7.54 0.05 35.91 5.86 2.39
    下载: 导出CSV

    Table  3  AAEM concentration in different char samples

    Sample Content w/%
    SiO2 Al2O3 Fe2O3 CaO MgO TiO2 SO3 K2O Na2O P2O5
    600AC 50.42 31.19 9.05 3.52 0.43 2.03 2.29 0.46 0.45 0.16
    600CS2-AC8 56.62 27.41 3.69 3.59 0.94 1.24 2.21 3.2 0.81 0.29
    600CS5-AC5 54.65 25.46 3.66 3.52 1.06 1.14 2.37 7.00 0.82 0.32
    600CS8-AC2 54.41 20.92 3.62 3.70 1.78 0.85 2.32 10.93 0.96 0.51
    600CS 18.07 0.74 0.64 10.17 15.14 0.03 7.02 39.73 4.59 3.87
    900AC 51.67 32.76 8.17 3.04 0.66 2.15 0.49 0.43 0.45 0.18
    900CS2-AC8 56.63 28.42 3.96 3.47 1.13 1.28 0.66 3.41 0.74 0.3
    900CS5-AC5 54.42 26.38 3.45 3.64 1.66 1.19 1.42 6.88 0.6 0.36
    900CS8-AC2 52.45 21.98 2.94 4.16 2.89 0.96 2.5 10.9 0.58 0.64
    900CS 26.1 0.81 0.56 10.78 15.62 0.04 4.78 34.08 3.16 4.07
    下载: 导出CSV

    Table  4  Microcrystalline parameters of studied char samples

    Sample d002, P/nm LC, P/nm d002, G/nm LC, G/nm XP XG d002, a/nm Lc, a/nm N(Lc, a/ d002, a)
    600AC 0.408 2.063 0.347 1.945 24.09 75.91 0.362 1.974 5.453
    600CS2-AC8 0.402 2.014 0.348 1.939 24.25 75.75 0.361 1.957 5.421
    600CS5-AC5 0.411 2.308 0.351 1.747 12.64 87.36 0.358 1.818 5.078
    600CS8-AC2 0.408 1.725 0.351 1.561 13.53 86.47 0.359 1.583 4.409
    600CS 0.413 2.020 0.356 1.087 13.77 86.23 0.364 1.215 3.338
    900AC 0.397 1.528 0.343 1.732 48.40 51.60 0.369 1.633 4.425
    900CS2-AC8 0.399 1.574 0.349 1.562 36.58 63.42 0.367 1.567 4.270
    900CS5-AC5 0.400 1.417 0.357 1.351 18.48 81.52 0.365 1.363 3.734
    900CS8-AC2 0.391 1.273 0.352 1.253 33.05 66.95 0.365 1.259 3.449
    900CS 0.402 1.231 0.356 0.892 28.55 71.45 0.369 0.989 2.680
    下载: 导出CSV
  • [1] JEONG H J, PARK S S, HWANG J. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1100℃[J]. Fuel, 2014, 116:465-470. doi: 10.1016/j.fuel.2013.08.015
    [2] YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels, 2011, 25(5):2314-2321. doi: 10.1021/ef200051z
    [3] STIEGEL G J, MAXWELL R C. Gasification technologies:The path to clean, affordable energy in the 21st century[J]. Fuel Process Technol, 2001, 71(1/3):79-97. http://cn.bing.com/academic/profile?id=29438df39500855c0d601bcfc3cb2d9a&encoded=0&v=paper_preview&mkt=zh-cn
    [4] FRANCO A, DIAZ A R. The future challenges for "clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy, 2008, 34(3):348-354. http://cn.bing.com/academic/profile?id=69399c9aa09d6be6a46145738291c844&encoded=0&v=paper_preview&mkt=zh-cn
    [5] DI BLASI C. Combustion and gasification rates of lignocellulosic chars[J]. Prog Energy Combust Sci, 2009, 35(2):121-140. doi: 10.1016/j.pecs.2008.08.001
    [6] DUPONT C, NOCQUET T, DA COSTA J A, VERNE-TOURNON C. Kinetic modelling of steam gasification of various woody biomass chars:Influence of inorganic elements[J]. Bioresour Technol, 2011, 102(20):9743-9748. doi: 10.1016/j.biortech.2011.07.016
    [7] DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014, 173:11-20. doi: 10.1016/j.biortech.2014.09.007
    [8] LIU L, CAO Y, LIU Q C. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions[J]. Fuel, 2015, 146:103-110. doi: 10.1016/j.fuel.2015.01.002
    [9] WU Z Q, YANG W C, LI Y W, YANG B L. Co-pyrolysis behavior of microalgae biomass and low-quality coal:Products distributions, char-surface morphology, and synergistic effects[J]. Bioresour Technol, 2018, 255:238-245. doi: 10.1016/j.biortech.2018.01.141
    [10] WU Z Q, WANG S Z, LUO Z Y, CHEN L, MENG H Y, ZHAO J. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass:Effects of the cellulose[J]. Bioresour Technol, 2017, 235:256-264. doi: 10.1016/j.biortech.2017.03.121
    [11] WU Z Q, MA C, JIANG Z, LUO Z Y. Structure evolution and gasification characteristic analysis on co-pyrolysis char from lignocellulosic biomass and two ranks of coal:Effect of wheat straw[J]. Fuel, 2019, 239:180-190. doi: 10.1016/j.fuel.2018.11.015
    [12] LI S D, CHEN X L, WANG L, LIU A B, YU G S. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresour Technol, 2013, 148:24-29. doi: 10.1016/j.biortech.2013.08.126
    [13] ZHU W K, SONG W L, LIN W G. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Process Technol, 2008, 89(9):890-896. doi: 10.1016/j.fuproc.2008.03.001
    [14] LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013, 112:609-623. doi: 10.1016/j.fuel.2013.01.031
    [15] ASADULLAH M, ZHANG S, MIN Z, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010, 101(20):7935-7943. doi: 10.1016/j.biortech.2010.05.048
    [16] LIANG D C, XIE Q, WAN C R, LI G S, CAO J Y. Evolution of structural and surface chemistry during pyrolysis of Zhundong coal in an entrained-flow bed reactor[J]. J Anal Appl Pyrolysis, 2019, 140:331-338. doi: 10.1016/j.jaap.2019.04.010
    [17] YUAN S, DAI Z H, ZHOU Z J, CHEN X L, YU G S, WANG F C. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresour Technol, 2012, 109:188-197. doi: 10.1016/j.biortech.2012.01.019
    [18] LIU M J, BAI J, KONG L X, BAI Z Q, HE C, LI W. The correlation between coal char structure and reactivity at rapid heating condition in TGA and heating stage microscope[J]. Fuel, 2020, 260:116318. doi: 10.1016/j.fuel.2019.116318
    [19] WU S Y, JING G, XIAO Z, WU Y Q, CAO J S. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2008, 22(1):199-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2684c477811868170c1b1ce0ffe87d55
    [20] BO F, BHATIA S K, BARRY J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuels, 2003, 17(3):744-754. doi: 10.1021/ef0202541
    [21] YAN L B, CAO Y, ZHOU H Z Y, HE B S. Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory[J]. Bioresour Technol, 2018, 269:384-392. doi: 10.1016/j.biortech.2018.08.099
    [22] WEI J T, GONG Y, GUO Q H, CHEN X L, DING L, YU G S. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals[J]. Renewable Energy, 2019, 131:597-605. doi: 10.1016/j.renene.2018.07.075
    [23] HUANG Y Q, YIN X L, WU C Z, WANG C W, XIE J J, ZHOU Z Q, MA L L, LI H B. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnol Adv, 2009, 27(5):568-572. doi: 10.1016/j.biotechadv.2009.04.013
    [24] JIA S, NING S Y, YING H, SUN Y J, XU W, YIN H. High quality syngas production from catalytic gasification of woodchip char[J]. Energy Convers Manage, 2017, 151:457-464. doi: 10.1016/j.enconman.2017.09.008
    [25] QI X J, XIN G, XUE L C, ZHENG C G. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity[J]. J Fuel Chem Technol, 2014, 110:401-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bcb3069d0ff18f7e7a9eee990cb1801
    [26] BAI B Y, GUO Q J, LI Y K, HU X D, MA J J. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy Fuels, 2018, 32(3):3356-3367. doi: 10.1021/acs.energyfuels.8b00192
    [27] YU J Q, GONG Y, WEI J T, DING L, SONG X D, YU G S. Promoting effect of biomass ash additives on high-temperature gasification of petroleum coke:Reactivity and kinetic analysis[J]. J Energy Inst, 2020, 52:420-425. http://cn.bing.com/academic/profile?id=927b197d799c12f324e11f25807bd708&encoded=0&v=paper_preview&mkt=zh-cn
    [28] AZARGOHAR R, NANDA S, KOZINSKI J A, DALAI A K, SUTARTO R. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel, 2014, 125:90-100. doi: 10.1016/j.fuel.2014.01.083
    [29] WANG G W, ZHANG J L, HOU X M, SHAO J G, GENG W W. Study on CO2 gasification properties and kinetics of biomass chars and anthracite char[J]. Bioresour Technol, 2015, 177:66-73. doi: 10.1016/j.biortech.2014.11.063
    [30] OCHOA J, CASSANELLO M C, BONELLI P R, CUKIERMAN A L. CO2 gasification of Argentinean coal chars:A kinetic characterization[J]. Fuel Process Technol, 2001, 74(3):161-176. http://www.sciencedirect.com/science/article/pii/S0378382001002351
    [31] LU L M, KONG C H, SAHAJWALLA V, HARRIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002, 81(9):1215-1225. doi: 10.1016/S0016-2361(02)00035-2
    [32] TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal:Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010, 91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016
    [33] LIU M J, BAI J, YU J L, KONG L X, BAI Z Q, LI H Z, HE C, GE Z F, CAO X, LI W. Correlation between char gasification characteristics at different stages and microstructure of char by combining X-ray diffraction and raman spectroscopy[J]. Energy Fuels, 2020, 34(4):4162-4172. doi: 10.1021/acs.energyfuels.9b04445
    [34] LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. CO2 gasification reactivity of biomass char:Catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresour Technol, 2013, 144:288-295. doi: 10.1016/j.biortech.2013.06.059
    [35] MITSUHIRO S, YOSHIHISA S, YUKIAKI H. Influence of coal characteristics on CO2 gasification[J]. Elsevier, 1982, 61(8):717-720. https://www.sciencedirect.com/science/article/pii/0016236182902459
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  33
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 修回日期:  2020-07-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回