留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity

WANG Liang ZHANG Hong-guang GUO Chun-yu FENG Li-juan LI Chun-hu WANG Wen-tai

王亮, 张红光, 郭春雨, 冯丽娟, 李春虎, 王文泰. Z型可见光催化剂Au NPs/g-C3N4/BiOBr的构建及其光催化性能[J]. 燃料化学学报(中英文), 2019, 47(7): 834-842.
引用本文: 王亮, 张红光, 郭春雨, 冯丽娟, 李春虎, 王文泰. Z型可见光催化剂Au NPs/g-C3N4/BiOBr的构建及其光催化性能[J]. 燃料化学学报(中英文), 2019, 47(7): 834-842.
WANG Liang, ZHANG Hong-guang, GUO Chun-yu, FENG Li-juan, LI Chun-hu, WANG Wen-tai. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 834-842.
Citation: WANG Liang, ZHANG Hong-guang, GUO Chun-yu, FENG Li-juan, LI Chun-hu, WANG Wen-tai. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 834-842.

Z型可见光催化剂Au NPs/g-C3N4/BiOBr的构建及其光催化性能

基金项目: 

the National Natural Science Foundation of China 51602297

Fundamental Research Funds for the Central Universities 201612007

Postdoctoral Innovation Program of Shandong Province 201603043

the Major Research Project of Shandong Province 2016ZDJS11A04

详细信息
  • 中图分类号: X703

Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity

Funds: 

the National Natural Science Foundation of China 51602297

Fundamental Research Funds for the Central Universities 201612007

Postdoctoral Innovation Program of Shandong Province 201603043

the Major Research Project of Shandong Province 2016ZDJS11A04

More Information
  • 摘要: 通过水热和原位还原法制备了一种新型Z型异质结三元复合材料Au NPs/g-C3N4/BiOBr,并通过X射线衍射、X射线光电子能谱、透射电子显微镜、紫外-可见漫反射光谱和光致发光发射光谱等技术对材料的形貌、结构进行了表征。通过在可见光下降解苯酚来评价光催化剂的活性。研究发现,Au NPs/g-C3N4/BiOBr显示出增强的光催化活性,对苯酚的降解能力是g-C3N4的3倍,是BiOBr的2.5倍。这可归因于三元复合材料的窄带隙(2.10eV)、Z型机理对光生电子-空穴对的有效分离和Au纳米颗粒的表面等离子体共振效应(SPR)。
  • Figure  1  TEM images of Au NPs/g-C3N4/BiOBr (a) and (b); high-resolution TEM images of the Au (c) and BiOBr particle (d) of Au NPs/g-C3N4/BiOBr; (e) EDS spectrum of Au NPs/g-C3N4/BiOBr

    Figure  2  XRD patterns of pure g-C3N4, pure BiOBr, g-C3N4/BiOBr and Au NPs/g-C3N4/BiOBr

    Figure  3  XPS spectra of Au NPs/g-C3N4/BiOBr (a) survey scan; (b) Au 4f; (c) C 1s; (d) N 1s; (e) Bi 4f; (f) Br 3d and (g) O 1s

    Figure  4  (a) UV-vis diffused reflectance spectra; (b) plot of (αhv)1/2 versus photon energy (hv) curves of g-C3N4, BiOBr, g-C3N4/BiOBr and Au NPs/g-C3N4/BiOBr; (c) the PL spectra of pure g-C3N4, pure BiOBr, g-C3N4/BiOBr and Au NPs/g-C3N4/BiOBr

    a: g-C3N4; b: BiOBr; c: g-C3N4/BiOBr; d: Au NPs/g-C3N4/BiOBr

    Figure  5  (a) Photocatalytic degradation of phenol over g-C3N4, BiOBr, Au NPs/BiOBr, Au NPs/g-C3N4, g-C3N4/BiOBr and Au NPs/g-C3N4/BiOBr under visible light irradiation; (b) The rate constant (k) of as-prepared samples for photocatalytic degradation of phenol under visible light; (c) Cycling tests of Au NPs/g-C3N4/BiOBr towards the degradation of phenol

    ■: g-C3N4; ●: BiOBr; ▲: Au NPs/BiOBr; ▼: Au NPs/g-C3N4; ◆: g-C3N4/BiOBr; : Au NPs/g-C3N4/BiOBr

    Figure  6  (a) Effects of ·OH, h+ and ·O2- quenchers on the degradation of phenol; (b) band structure alignments for g-C3N4, BiOBr, g-C3N4/BiOBr and Au NPs/g-C3N4/BiOBr

    Figure  7  Mechanism of Au NPs/g-C3N4/BiOBr composite for degradation of phenol

  • [1] ZHU Z, MURUGANANTHAN M, GU J, ZHANG Y. Fabrication of a Z-Scheme g-C3N4/Fe-TiO2 Photocatalytic composite with enhanced photocatalytic activity under visible light irradiation[J]. Catalysts, 2018, 8(112):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=catalysts-08-00112
    [2] CHENG N, TIAN J, LIU Q, GE C, QUSTI A H, ASIRI A M, AL-YOUBI A O, SUN X. Au-nanoparticle-loaded graphitic carbon nitride nanosheets:Green photocatalytic synthesis and application toward the degradation of organic pollutants[J]. ACS Appl Mater Inter, 2013, 5(15):6815-6819. doi: 10.1021/am401802r
    [3] ZHAO Y, WANG W, LI Y, ZHANG Y, YAN Z, HUO Z. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production[J]. Nanoscale, 2014, 6(1):195-198. doi: 10.1039/C3NR04280D
    [4] CHONG B, CHEN L, WANG W, HAN D, WANG L, FENG L, LI Q, LI C. Visible-light-driven Ag-decorated g-C3N4/Bi2WO6 Z-scheme composite for high photocatalytic activity[J]. Mater Lett, 2017, 204:149-153. doi: 10.1016/j.matlet.2017.06.033
    [5] WANG L, SUN B, WANG W, FENG L, LI Q, LI C. Modification of Bi2WO6 composites with rGO for enhanced visible light driven NO removal[J]. Asia Pac J Chem Eng, 2017, 12(1):121-127. doi: 10.1002/apj.v12.1
    [6] QU M, WAN S, ZHONG Q, ZHANG S, SONG Y, GUO L, CAI W, XU Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4(040) with enhanced visible-light-induced photocatalytic oxidation performance[J]. Appl Catal B:Environ, 2018, 221:97-107. doi: 10.1016/j.apcatb.2017.09.005
    [7] SAFAEI J, ULLAH H, MOHAMED N A, MOHAMED NOH M F, SOH M F, TAHIR A A, AHMAD LUDIN N, IBRAHIM M A, WAN ISAHAK W N R, MAT TERIDI M A. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Appl Catal B:Environ, 2018, 234:296-310. doi: 10.1016/j.apcatb.2018.04.056
    [8] YE L, LIU J, JIANG Z, PENG T, ZAN L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Appl Catal B:Environ, 2013, 142-143:1-7. doi: 10.1016/j.apcatb.2013.04.058
    [9] YANG Z, LI J, CHENG F, CHEN Z, DONG X. BiOBr/protonated graphitic C3N4 heterojunctions:Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. J Alloy Compd, 2015, 634:215-222. doi: 10.1016/j.jallcom.2015.02.103
    [10] ZHENG Y, JIAO Y, ZHU Y, LI L H, HAN Y, CHEN Y, DU A, JARONIEC M, QIAO S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014, 5(3783):1-8. http://d.old.wanfangdata.com.cn/Periodical/cldb2018z1008
    [11] LI J, SHEN B, HONG Z, LIN B, GAO B, CHEN Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chem Commun, 2012, 48(98):12017-12019. doi: 10.1039/c2cc35862j
    [12] JIANG M, SHI Y, HUANG J, WANG L, SHE H, TONG J, SU B, WANG Q. Synthesis of flowerlike g-C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation[J]. Eur J Inorg Chem, 2018, 2018(17):1834-1841. doi: 10.1002/ejic.201800110
    [13] LI W, FENG C, DAI S, YUE J, HUA F, HOU H. Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light[J]. Appl Catal B:Environ, 2015, 168-169:465-471. doi: 10.1016/j.apcatb.2015.01.012
    [14] TONDA S, KUMAR S, KANDULA S, SHANKER V. Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. J Mater Chem A, 2014, 2(19):6772-6780. doi: 10.1039/c3ta15358d
    [15] WANG H, ZHANG L, CHEN Z, HU J, LI S, WANG Z, LIU J, WANG X. Semiconductor heterojunction photocatalysts:Design, construction, and photocatalytic performances[J]. Chem Soc Rev, 2014, 43(15):5234-5244. doi: 10.1039/C4CS00126E
    [16] HUANG Z, SONG J, WANG X, PAN L, LI K, ZHANG X, WANG L. Switching charge transfer of C3N4/W18O49 from type-Ⅱ to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution[J]. Nano Energy, 2017, 10:308-316.
    [17] PAN L, ZHANG J, JIA X, MA Y, ZHANG X, WANG L, ZOU J. Highly efficient Z-scheme WO3-x quantum dots/TiO2 for photocatalytic hydrogen generation[J]. Chin J Catal, 2017, 38(2):253-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201702008
    [18] JIA X, M. TAHIR, PAN L, HUANG Z, ZHANG X, WANG L, ZOU J. Direct Z-scheme composite of CdS and oxygen-defected CdWO4:An efficient visible-light-driven photocatalyst for hydrogen evolution[J]. Appl Catal B:Environ, 2016, 12:154-161.
    [19] FU J, TIAN Y, CHANG B, XI F, DONG X. BiOBr-carbon nitride heterojunctions:Synthesis, enhanced activity and photocatalytic mechanism[J]. J Mater Chem, 2012, 22(39):21159-21166. doi: 10.1039/c2jm34778d
    [20] WANG W, WU Z, EFTEKHARI E, HUO Z, LI X, TADE M O, YAN C, YAN Z, LI C, LI Q, ZHAO D, High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide[J]. Catal Sci Technol, 2018, 8(6):1704-1711. doi: 10.1039/C8CY00082D
    [21] LIU X, CAI L. Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants[J]. Appl Surf Sci, 2018, 445:242-254. doi: 10.1016/j.apsusc.2018.03.178
    [22] DI J, XIA J, YIN S, XU H, HE M, LI H, XU L, JIANG Y. A g-C3N4/BiOBr visible-light-driven composite:Synthesis via a reactable ionic liquid and improved photocatalytic activity[J]. RSC Adv, 2013, 3(42):19624-19631. doi: 10.1039/c3ra42269k
    [23] GAO H, ZHANG P, ZHAO J, ZHANG Y, HU J, SHAO G, Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system[J]. Appl Catal B:Environ, 2017, 210:297-305. doi: 10.1016/j.apcatb.2017.03.050
    [24] YANG Y, GUO W, GUO Y, ZHAO Y, YUAN X, GUO Y. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity[J]. J Hazard Mater, 2014, 271:150-159. doi: 10.1016/j.jhazmat.2014.02.023
    [25] HOU J, WANG Z, YANG C, ZHOU W, JIAO S, ZHU H. Hierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheets[J]. J Phys Chem C, 2013, 117(10):5132-5141. doi: 10.1021/jp311996r
    [26] YU X, WU P, QI C, SHI J, FENG L, LI C, WANG L. Ternary-component reduced graphene oxide aerogel constructed by g-C3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance[J]. J Alloy Compd, 2017, 729:162-170. doi: 10.1016/j.jallcom.2017.09.175
    [27] GUO Y, ZHANG J, ZHOU D, DONG S. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation[J]. J Mol Liq, 2018, 262:194-203. doi: 10.1016/j.molliq.2018.04.091
  • 加载中
图(8)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  76
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-04-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回