留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含水量对神府煤快速热解过程气体释放及孔隙结构变化的影响

常清华 李宏俊 崔童敏 樊文克 于广锁 王辅臣

常清华, 李宏俊, 崔童敏, 樊文克, 于广锁, 王辅臣. 含水量对神府煤快速热解过程气体释放及孔隙结构变化的影响[J]. 燃料化学学报(中英文), 2017, 45(4): 427-435.
引用本文: 常清华, 李宏俊, 崔童敏, 樊文克, 于广锁, 王辅臣. 含水量对神府煤快速热解过程气体释放及孔隙结构变化的影响[J]. 燃料化学学报(中英文), 2017, 45(4): 427-435.
CHANG Qing-hua, LI Hong-jun, CUI Tong-min, FAN Wen-ke, YU Guang-suo, WANG Fu-chen. Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 427-435.
Citation: CHANG Qing-hua, LI Hong-jun, CUI Tong-min, FAN Wen-ke, YU Guang-suo, WANG Fu-chen. Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 427-435.

含水量对神府煤快速热解过程气体释放及孔隙结构变化的影响

详细信息
    通讯作者:

    王辅臣, Tel:021-64252521, E-mail:wfch@ecust.edu.cn

  • 中图分类号: TQ541

Effect of moisture content on gas release and pore structure development of wetted Shenfu coal during rapid pyrolysis

  • 摘要: 通过外添加水分改变神府煤含水量,利用高频加热炉进行快速热解,研究了含水量对神府煤快速热解过程的影响,考察了四种含水量神府煤快速热解气相产物分布及变化规律,利用孔/表面分析仪表征了固相产物的结构变化。结果表明,随着煤中含水量升高,热解气总体积和最大释放速率减小;热解焦的比表面积和孔容随含水量升高而增大,与原煤煤焦相比,含水煤制得热解焦中保留了较多小孔,孔隙结构更加发达;水分有利于抑制热解过程孔的阻塞与塌陷,提高煤焦表面的粗糙程度和多孔结构的复杂程度。
  • 图  1  高频炉快速热解装置示意图

    Figure  1  Rapid pyrolysis system with high frequency furnace

    图  2  不同含水量神府煤1 573 K快速热解过程质量收率

    Figure  2  Mass yield of char for Shenfu coal rapid pyrolysis at 1 573 K with varied moisture content

    图  3  第一阶段 (stage 1) ln (Ys-1) 与t的关系

    Figure  3  Relation between ln (Ys-1) and time at stage 1(dehydration)

    图  4  不同含水量神府煤快速热解气体释放

    Figure  4  Gas release rate of different wetted coals during pyrolysis

    (a): SF-coal (0); (b): SF-coal (9%); (c): SF-coal (17%); (d): SF-coal (23%)

    图  5  热解气体释放量随固体质量收率变化

    Figure  5  Relation between gas yield and mass char yield

    (a): H2; (b): CH4; (c): CO

    图  6  热解气体总体积及释放速率

    Figure  6  Variation of pyrolysis gas volume and release rate

    (a): variation of pyrolysis gas volume; (b): release velocity of pyrolysis gas volume

    图  7  SF-coal (23%) 及煤焦吸附-脱附等温线

    Figure  7  Adsorption/desorption isotherms of SF-coal (23%) and chars

    (a): SF-coal (23%); (b): SF-150-23%; (c): SF-450-23%

    图  8  含水神府煤制得热解焦平均孔径 (APS) 及比表面积 (BET) 的变化

    Figure  8  Variation of char average pore size and BET surface area of wetted coal during pyrolysis

    (a): SF-coal (0) and chars; (b): SF-coal (9%) and chars; (c): SF-coal (17%) and chars; (d): SF-coal (23%) and chars

    图  9  含水神府煤及热解焦的孔径分布

    Figure  9  Pore size distribution of Shenfu coal wetted and pyrolysis chars

    (a): SF-coal (0) and pyrolysis chars; (b): SF-coal (23%) and pyrolysis chars

    图  10  不同含水量神府煤热解前后孔长变化比例

    Figure  10  Variation of the pore length of different moisture content coal

    图  11  SF-coal (0) 样品吸附曲线FHH拟合

    Figure  11  Plots of ln V vs ln (ln (p0/p)) reconstructed from the N2 gas adsorption isotherms

    图  12  不同含水量煤制得热解焦分形维数

    Figure  12  Fractal dimension of chars from wetted coal pyrolysis

    表  1  干燥后神府烟煤的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of Shenfu bituminous coal

    Coal sample Proximate analysis wd/% Ultimate analysis wd/%
    V FC A C H N S O*
    SF-coal 35.48 59.06 5.46 72.87 3.88 1.01 0.17 16.61
    *: by difference
    下载: 导出CSV

    表  2  神府煤及煤焦颗粒粒径平均值

    Table  2  Average particle size of Shenfu coal wetted and chars

    Moisture content Particle size d/μm
    0 9% 17% 23%
    Coal 127.1 128.4 129.9 131.6
    Char 109.1 109.0 109.2 109.0
    Average 118.1 118.7 119.6 120.3
    下载: 导出CSV

    表  3  煤颗粒在不同长度恒温区中停留时间

    Table  3  Residence time of the coal particles at different length of hot zones

    Moisture content Residence time at different length of hot zones t/ms (T=1 573 K)
    30 mm 60 mm 120 mm 150 mm 180 mm 210 mm 270 mm 300 mm 330 mm 360 mm 450 mm
    0 147 293 587 733 880 1 027 1 320 1 466 1 613 1 760 2 200
    9% 145 290 581 726 871 1 017 1 307 1 452 1 598 1 743 2 179
    17% 143 286 573 716 859 1 002 1 289 1 432 1 575 1 718 2 148
    23% 141 283 566 707 849 990 1 273 1 414 1 556 1 697 2 121
    下载: 导出CSV

    表  4  含水量神府煤及部分热解焦的水分形态

    Table  4  Moisture form of Shenfu coal wetted and chars

    Sample Mf, ar/% Minh, ar/% Mar/% Sample Mf, ar/% Minh, ar/% Mar /%
    SF-coal (9%) 7.07 1.97 9.04 SF-180-17% 1.57 0.93 2.50
    SF-coal (17%) 15.09 1.93 17.02 SF-450-17% 0 0.01 0.01
    SF-coal (23%) 21.01 1.87 22.88 SF-270-23% 3.73 1.81 5.54
    SF-450-9% 0 0.01 0.01 SF-300-23% 1.42 0.89 2.31
    SF-150-17% 3.96 1.84 5.80 SF-450-23% 0 0.02 0.02
    下载: 导出CSV
  • [1] 王辅臣, 于广锁, 龚欣, 刘海峰, 王亦飞, 梁钦峰.大型煤气化技术的研究与发展[J].化工进展, 2009, 28(2):173-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200902002.htm

    WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009, 28(2):173-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200902002.htm
    [2] RAMIN A, LESLIE L. ISAACS. Drying kinetics of lignite, subbituminous coals, and high-volatile bituminous coals[J]. Energy Fuels, 1990, 4(5):448-452. doi: 10.1021/ef00023a007
    [3] LI X C, SONG H, WANG Q, MEESRI C, WALL T, YU J L. Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal[J]. J Environ Sci, 2009, 21(s1):127-130. http://www.sciencedirect.com/science/article/pii/S1001074209600553
    [4] WANG H H. Kinetic analysis of dehydration of a bituminous coal using the TGA technique[J]. Energy Fuels, 2007, 21(6):3070-3075. doi: 10.1021/ef070170y
    [5] PATISSON F, ETIENNE L, HANROT F, ABLITZER D, HOUZELOT J L. Coal pyrolysis in a rotary kiln:Part I. Model of the pyrolysis of a single grain[J]. Metall Mater Trans B, 2000, 31(2):381-390. doi: 10.1007/s11663-000-0056-5
    [6] DING L, ZHOU Z J, DAI Z H, YU G S. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals[J]. Appl Energy, 2015, 155:660-670. doi: 10.1016/j.apenergy.2015.06.062
    [7] ZHOU Z J, DING L, WU L, LIN S J, CUI T M, YU G S. Comparison of structure and gasification reactivity of rapid pyrolysis chars of coal water slurries and parent coals[J]. Energy Technol, 2014, 2(3):284-291. doi: 10.1002/ente.v2.3
    [8] HAYASHI J, NORINAGA K, YAMASHITA T, TADATOSHI C. Effect of sorbed water on conversion of coal by rapid pyrolysis[J]. Energy Fuels, 1999, 13(3):611-616. doi: 10.1021/ef980186b
    [9] YIP K, WU H W, ZHANG D K. Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification[J]. Energy Fuels, 2007, 21(5):2883-2891. doi: 10.1021/ef7002443
    [10] CAI Z, CLAYTON S, WU H W, HAYASHI J, LI C Z. Effects of dewatering on the pyrolysis and gasification reactivity of Victorian brown coal[J]. Energy Fuels, 2007, 21(2):399-404. doi: 10.1021/ef060404y
    [11] 吴磊, 周志杰, 王兴军, 于广锁, 王辅臣.神府烟煤水煤浆快速热解焦结构演化及其反应性的研究[J].燃料化学学报, 2013, 41(4):422-429. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18161.shtml

    WU Lei, ZHOU Zhi-jie, WANG Xin-jun, YU Guang-suo, WANG Fu-chen. Structure changes and gasification reactivity of CWS char from Shenfu coal rapid pyrolysis[J]. J Fuel Chem Technol, 2013, 41(4):422-429. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18161.shtml
    [12] 崔童敏, 李超, 周志杰, 常清华, 高瑞, 于广锁, 王辅臣.神府烟煤快速热解特性研究[J].燃料化学学报, 2015, 43(11):1287-1294. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18721.shtml

    CUI Tong-min, LI Chao, ZHOU Zhi-jie, CHANG Qing-hua, GAO Rui, YU Guang-suo, WANG Fu-chen. Rapid pyrolysis characteristic of Shenfu bituminous coal[J]. J Fuel Chem Technol, 2015, 43(11):1287-1294. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18721.shtml
    [13] BUTUZOVA L, MARIA R, KRZTON A, MINKOVA V. The effect of water on the yield and structure of the products of brown coal pyrolysis and hydrogenation[J]. Fuel, 1998, 77(6):639-643. doi: 10.1016/S0016-2361(97)00212-3
    [14] 胡二峰, 张纯, 武荣成, 付晓恒, 许光文.内构件固定床反应器中不同水分煤的热解特性[J].化工学报, 2015, 66(7):2656-2663. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507040.htm

    HU Er-feng, ZHANG chun, WU Rong-cheng, FU Xiao-heng, XU Guang-wen. Pyrolysis of coal with different moisture contents in fixed-bed reactor with internals[J]. CIESC J, 2015, 66(7):2656-2663. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507040.htm
    [15] PRATIONOA W, ZHANG J, CUI J F, WANG Y T, ZHANG L. Influence of inherent moisture on the ignition and combustion of wet Victorian brown coal in air-firing and oxy-fuel modes:Part 1:The volatile ignition and flame propagation[J]. Fuel Process Technol, 2015, 138:670-679. doi: 10.1016/j.fuproc.2015.07.008
    [16] 刘辉, 吴少华, 孙锐, 徐睿, 邱朋华, 李可夫, 秦裕琨.快速热解褐煤焦的比表面积及孔隙结构[J].中国电机工程学报, 2005, 25(12):86-90. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200512015.htm

    LIU Hui, WU Shao-hua, SUN Rui, XU Rui, QIU Peng-hua, LI Ke-fu, QIN Yu-kun. Specific area and pore structure of lignite char under the condition of fast pyrolysis[J]. Proc CSEE, 2005, 25(12):86-90. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200512015.htm
    [17] 谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing:Science Press, 2002.
    [18] YAO Y, LIU D, TANG D, TANG S, HUANG W. Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4 adsorption capacity of coals[J]. Int J Coal Geol, 2008, 73(1):27-42. doi: 10.1016/j.coal.2007.07.003
    [19] PYUN S I, RHEE C K. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures[J]. Electrochim Acta, 2004, 49(24):4171-4780. doi: 10.1016/j.electacta.2004.04.012
    [20] PFEIFER P, AVNIR D. Chemistry nonintegral dimensions between two and three[J]. Chem Phys, 1983, 79(7):3369-3558. https://www.researchgate.net/publication/285323109_Chemistry_non-integral_dimensions_between_two_and_threeJ
    [21] 许慎启. 煤气化反应动力学及渣中残碳反应活性研究[D]. 上海: 华东理工大学, 2010.

    XU Shen-qi. Gasification kinetics study of coal char and unburned carbon in slag[D]. Shanghia:East China University of Science and Technology, 2010.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  27
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-28
  • 修回日期:  2017-02-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-04-10

目录

    /

    返回文章
    返回