留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Aun团簇催化水煤气变换反应机理的密度泛函理论研究

张晓锋 薛继龙 孟跃 钱梦丹 夏盛杰 倪哲明

张晓锋, 薛继龙, 孟跃, 钱梦丹, 夏盛杰, 倪哲明. Aun团簇催化水煤气变换反应机理的密度泛函理论研究[J]. 燃料化学学报(中英文), 2017, 45(12): 1473-1480.
引用本文: 张晓锋, 薛继龙, 孟跃, 钱梦丹, 夏盛杰, 倪哲明. Aun团簇催化水煤气变换反应机理的密度泛函理论研究[J]. 燃料化学学报(中英文), 2017, 45(12): 1473-1480.
ZHANG Xiao-feng, XUE Ji-long, MENG Yue, QIAN Meng-dan, XIA Sheng-jie, NI Zhe-ming. Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1473-1480.
Citation: ZHANG Xiao-feng, XUE Ji-long, MENG Yue, QIAN Meng-dan, XIA Sheng-jie, NI Zhe-ming. Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1473-1480.

Aun团簇催化水煤气变换反应机理的密度泛函理论研究

基金项目: 

国家自然科学基金 21503188

浙江省自然科学基金 LQ15B030002

详细信息
  • 中图分类号: O641

Reaction mechanism of water gas shift reaction Aun clusters:A density functional theory study

Funds: 

the National Natural Science Foundation of China 21503188

the Zhejiang Provincial Natural Science Foundation of China LQ15B030002

More Information
    Corresponding author: NI Zhe-ming, Tel/Fax:88320373, Fax:027-87545526, E-mail:jchx@zjut.edu.cn
  • 摘要: 利用密度泛函理论(DFT)研究了Au10、Au13和Au20三类团簇的稳定性和对水煤气变换(WGSR)反应的催化活性,考察了各物质在Aun团簇上的吸附行为和微观反应机理。结果表明,三类Aun团簇的稳定性顺序为Au10<Au13<Au20,而Aun团簇中电子离域性及吸附能力大小趋势为Au13>Au10>Au20。在三类Aun团簇上,水煤气变换反应的控速步骤均为H2O的解离,但其反应机理路径有所不同。Au10团簇上为羧基机理,COOH*中间体直接解离;Au13团簇上为氧化还原机理,两个OH*发生歧化反应;Au20团簇上为羧基机理,COOH*和OH*发生歧化反应。通过对三类团簇上的最佳反应路径进行比较发现,Au13团簇在低温下具有较好的催化活性。
  • 图  1  三类团簇的几何构型示意图

    Figure  1  Geometric configuration of three Aun clusters

    (a):Au10; (b): Au13; (c): Au20

    图  2  三类Au团簇的d轨道局部态密度

    Figure  2  d orbital partial density of state (PDOS) of the three Aun clusters

    图  3  各物质在三类团簇上的最佳吸附构型示意图

    Figure  3  Optimal adsorption configurations of each species on three Aun clusters

    图  4  Au团簇催化WGSR的氧化还原机理和羧基机理的基本步骤

    Figure  4  Redox and carboxyl mechanisms for the WGSR reaction over Aun clusters.

    *: a vacant site; X*: an adsorbed X species; A, B, C, Da1, Da2, Db1, Db2, E, F, G, H : reaction step

    图  5  WGSR在Au10团簇上的各反应能量变化

    Figure  5  Variation of the reaction energy of WGSR on Au10 cluster

    图  6  WGSR在Au13团簇上的各反应能量变化

    Figure  6  Variation of the reaction energy of WGSR on Au13 cluster

    图  7  WGSR在Au20团簇上的各反应能量变化

    Figure  7  Variation of the reaction energy of WGSR on Au20 cluster

    图  8  各团簇上最佳反应路径基元步骤的过渡态、终态

    Figure  8  Transition states and final states of the elementary steps for the optimal WGSR reaction path on three Aun cluster

    图  9  三类Au团簇上最佳反应路径基元反应的能量比较

    Figure  9  Comparison of the energy response of the optimal reaction paths for WGSR on three Aun clusters

    表  1  各物质在三类团簇上的吸附位及吸附能

    Table  1  Adsorption site and adsorption energy of each reaction species on three Aun clusters

    Specie Cluster Adsorption site Eads/eV Specie Cluster Adsorption site Eads/eV
    CO Au10 C: Top3pw -1.10 O Au10 O: Top4pw -2.93
    Au13 C: Top -1.44 Au13 O: Hollow -3.59
    Au20 C: Top -0.90 Au20 O: Edge -2.70
    H2O Au10 O: Top6pw -0.31 COOH Au10 C: Bridge -2.07
    Au13 O: Hollow -0.47 Au13 C: Hollow -2.56
    Au20 O: Bridge -0.41 Au20 C: Top -1.82
    OH Au10 O: Top4pw -2.37 CO2 Au10 C: Bridge -0.17
    Au13 O: Top -2.63 Au13 C: Hollow -0.18
    Au20 O: Top -2.05 Au20 C: Surface -0.17
    H Au10 H: Top4pw -2.38 H2 Au10 H: Hollow -0.12
    Au13 H: Top -2.68 Au13 H: Top -1.48
    Au20 H: Top -1.91 Au20 H: Hollow -0.12
    下载: 导出CSV

    表  2  Au团簇上各基元反应的活化能和反应能量变化

    Table  2  Activation energy and reaction energy change of each reaction step on various Aun clusters

    Mechanism Base reaction Au10 cluster Au13 cluster Au20 cluster
    Ea/eV ΔE/eV Ea/eV ΔE/eV Ea/eV ΔE/eV
    C: H2O*+*=H*+OH* 2.86 2.62 1.76 1.17 2.12 1.52
    Redox mechanism Da1: OH*+*=O*+H* 4.98 3.54 2.43 1.82 5.00 2.85
    Da2: OH*+OH*=H2O*+O* 1.89 1.80 0.54 -0.81 3.63 -1.20
    E: CO*+O*=CO2*+* 3.43 -2.35 1.22 -1.79 0.32 -0.10
    Carboxyl mechanism F: CO*+OH*=COOH*+* 0.04 -2.54 0.55 -1.43 0.03 -2.29
    Db1: COOH*+*=H*+COO* 2.09 -0.25 0.22 -0.04 2.61 0.35
    Db2: COOH*+OH*=H2O*+COO* 2.37 -2.69 0.51 -0.58 1.80 -0.23
    G: 2H*=H2+2* 0.92 -0.84 0.81 0.36 1.34 -0.11
    *: a vacant site
    下载: 导出CSV
  • [1] 朱俏俏, 程纪华.氢能制备技术研究进展[J].石油石化节能, 2015, 12: 51-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gwyt201512026&dbname=CJFD&dbcode=CJFQ

    ZHU Qiao-qiao, CHENG Ji-hua. Research progress of hydrogen energy preparation technology[J]. Energy Conserv Emiss, 2015, 12: 51-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gwyt201512026&dbname=CJFD&dbcode=CJFQ
    [2] CHEN L, NI G, HAN B, ZHOU C G, WU J P. Mechanism of water gas shift reaction on Fe3O4 (111) surface[J]. Acta Chim Sin, 2011, 69(4): 393-398. https://www.researchgate.net/publication/285867546_Mechanism_of_Water_Gas_Shift_Reaction_on_Fe3O4_111_Surface
    [3] 毛江洪, 倪哲明, 潘国祥, 胥倩. Cu催化水煤气的变换反应机理[J].物理化学学报, 2008, 24(11): 2059-2064. doi: 10.3866/PKU.WHXB20081121

    MAO Jiang-hong, NI Zhe-ming, PAN Guo-xiang, XU Qian. Mechanism of the copper catalyzed water gas shift reaction[J]. Acta Phys Chim Sin, 2008, 24(11): 2059-2064. doi: 10.3866/PKU.WHXB20081121
    [4] NGUYEN-PHAN T D, BABER A E, RODRIGUEZ J A, SENANAYAKE S D. Au and Pt nanoparticle supported catalysts tailored for H2 production: from models to powder catalysts[J]. Appl Catal A: Gen, 2015, 518: 18-47. http://www.sciencedirect.com/science/article/pii/S0926860X15302866
    [5] PEREZ P, SORIA M A, CARABINEIRO S A C, MALDONADO-HODAR F J, MENDES A. Application of Au/TiO2 catalysts in the low temperature water gas shift reaction[J]. Int J Hydrogen Ene, 2016, 41(8): 4670-4681. doi: 10.1016/j.ijhydene.2016.01.037
    [6] ÖZYONUM G N, YILDIRIM R. Water gas shift activity of Au-Re catalyst over microstructured cordierite monolith wash-coated by ceria[J]. Int J Hydrogen Enegy, 2016, 41(12): 5513-5521. doi: 10.1016/j.ijhydene.2016.02.025
    [7] GAMBOA-ROSALES N K, AYASTUY J L, GUTIERREZ-ORTIZ M A. Effect of Au in Au-Co3O4/CeO2 catalyst during oxygen-enhanced water gas shift[J]. Int J Hydrogen Enegy, 2016, 41(42): 19408-19417. doi: 10.1016/j.ijhydene.2016.05.237
    [8] RODRIGUEZ J A, LIU P, HRBEK J, PEREZ M, EVANS J. Water gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides[J]. J Mol Catal A Chem, 2008, 281(1/2): 59-65. http://www.sciencedirect.com/science/article/pii/S138111690700444X
    [9] 于强强, 董园园, 廖卫平, 金明善, 何涛, 索掌怀. CeO2-Al2O3负载金催化剂用于水煤气变换反应的催化活性[J].燃料化学学报, 2010, 38(2): 223-229. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17567.shtml

    YU Qing-qiang, DONG Yuan-yuan, LIAO Wei-ping, JIN Ming-shan, HE Tao, SUO Zhang-huai. Preparation of ceria-alumina and catalytic activity of gold catalyst supported on ceria-alumina for water gas shift reaction[J]. J Fuel Chem Technol, 2010, 38(2): 223-229. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17567.shtml
    [10] CASTANO, REINA T R, IVANOVA S, CENTENO M A, ODRIOZOLA J A. Pt vs. Au in water gas shift reaction[J]. J Catal, 2014, 314: 1-9. doi: 10.1016/j.jcat.2014.03.014
    [11] 黄均. 纳米金催化CO低温氧化及绿色还原新体系研究[D]. 上海: 复旦大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10246-1014442563.htm

    HUANG Jun. Gold nanoparticles catalyzed low-temperature CO oxidation and novel system for green reduction[D]. Shanghai: Fudan University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10246-1014442563.htm
    [12] CHEN Y, WANG H, BURCH R, HARDACRE C, HU P. New insight into mechanisms in water gas shift reaction on Au/CeO2(111): a density functional theory and kinetic study[J]. Faraday Discuss, 2011, 152(1): 121. http://www.ncbi.nlm.nih.gov/pubmed/22455041
    [13] CHEN Y, CHENG J, HU P, WANG H. Examining the redox and formate mechanisms for water gas shift reaction on Au/CeO2 using density functional theory[J]. Surf Sci, 2008, 602(17): 2828-2834. doi: 10.1016/j.susc.2008.06.033
    [14] FEDOROV A V, KHMEL' T A. DFT and in situ EXAFS investigation of gold/ceria-zirconia low temperature water gas shift catalysts: identification of the nature of the active form of gold.[J]. J Phys Chem B, 2005, 109(47): 22553-9. doi: 10.1007/s10573-005-0009-z
    [15] SAQLAIN M A, HUSSAIN A, SIDDIQ D M, LEENAERTS O, LEITAO A A. DFT study of synergistic catalysis of the water gas shift reaction on Cu-Au bimetallic surfaces[J]. ChemCatChem, 2016, 8(6): 1208-1217. doi: 10.1002/cctc.201501312
    [16] 蒋军辉, 曹勇勇, 倪哲明, 张连阳.噻吩在Au13和Pt13团簇上加氢脱硫的反应机理比较[J].燃料化学学报, 2016, 44(8): 961-969. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18881.shtml

    JIANG Jun-hui, CAO Yong-yong, NI Zhe-ming, ZHANG Lian-yang. Comparison of reaction mechanism of thiophene hydrodesulfurization on Au13 and Pt13 clusters[J]. J Fuel Chem Technol, 2016, 44(8): 961-969. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18881.shtml
    [17] ANDERSSON T, ZHANG C, BJORNEHOLM O, MIKKELA M H, JANKALA K. Electronic structure transformation in small bare Au clusters as seen by X-ray photoelectron spectroscopy[J]. J Phys B: At Mol Ophys, 2017, 50(1): 015102. doi: 10.1088/1361-6455/50/1/015102
    [18] CHENG X, LI F, WANG C. Density functional theory study of CO oxidation by O2, on Aun, (n=11, 13 and 14) clusters as catalysis: from a comparative review[J]. Comput Theor Chem, 2016, 1097: 1-7. doi: 10.1016/j.comptc.2016.10.007
    [19] 邓小辉. 金原子团簇几何结构和电子结构的理论研究[D]. 成都: 四川大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10610-2008027760.htm

    DENG Xiao-hui. A theoretical study on geometries and electronic structure of gold clusters[D]. Chengdu: Sichuan University, 2007. http://cdmd.cnki.com.cn/article/cdmd-10610-2008027760.htm
    [20] WANG S, WANG W N, LU J, CHEN G H, FAN K N. A theoretical study on Aun (n=2-20) with combined density functional and genetic algorithm methods[J]. Acta Chim Sin, 2007, 65(19): 2085-2091. http://sioc-journal.cn/Jwk_hxxb/EN/article/showSupportInfo.do?id=329962
    [21] 刘晓明, 倪哲明, 姚萍, 胥倩, 毛江洪, 王巧巧.三种Au(111)催化水煤气变换反应机理的比较[J].物理化学学报, 2010, 26(6): 1599-1606. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlhx201006024&dbname=CJFD&dbcode=CJFQ

    LIU Xiao-ming, NI Zhe-ming, YAO Ping, XU Qian, MAO Jiang-hong, WANG Qiao-qiao.Comparison of three reaction mechanisms for the water gas shift reaction on Au(111) surface[J]. Acta Phys-Chim Sin, 2010, 26(6): 1599-1606. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlhx201006024&dbname=CJFD&dbcode=CJFQ
    [22] REN N N, GUO L, DONG X N, WEN C X. Theoretical study on menchanism of water gas shift reaction catalyzed by binary copper cluster[J]. Acta Chim Sinica, 2015, 73(4): 343-348. doi: 10.6023/A14110790
    [23] MOHSENZADEH A, RICHARDS T, BOLTON K. DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces[J]. Surf Sci, 2016, 644: 53-63. doi: 10.1016/j.susc.2015.09.014
    [24] ZHOU M X, LIU B. DFT investigation on the competition of the water gas shift reaction versus methanation on clean and potassium-modified Nickel(111) surfaces[J]. ChemCatChem, 2015, 7: 3928-3935. doi: 10.1002/cctc.201500547
    [25] 赵国利, 刘丹, 刘实, 张晓彤, 桂建舟, 孙兆林.不同金属催化水煤气变换反应活性的DFT研究[J].石油化工高等学校学报, 2005, 18(2): 19-23. http://d.wanfangdata.com.cn/Periodical/syhggdxx200502006

    ZHAO Guo-li, LIU Dan, LIU Shi, ZHANG Xiao-tong, GUI Jian-zhou, SUN Zhao-lin. DFT studies of activity of water gas shift reaction by several metals catalyzed[J]. J Petrochem Univ, 2005, 8(2): 19-23. http://d.wanfangdata.com.cn/Periodical/syhggdxx200502006
    [26] WILLIAMS W D, GREELEY J P, DELGASS W N, RIBEIRO F H. Water activation and carbon monoxide coverage effects on maximum rates for low temperature water-gas shift catalysis[J]. J Catal, 2017, 347: 197-204. doi: 10.1016/j.jcat.2017.01.016
    [27] LIN R J, CHEN H L, JU S P. Quantum-chemical calculations on the mechanism of the water-gas shift reaction on nanosized gold cluster[J]. J Phys Chem C, 2012, 116(1): 336-342. doi: 10.1021/jp209172w
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  50
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12
  • 修回日期:  2017-09-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-12-10

目录

    /

    返回文章
    返回