留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4/RGO复合材料的制备及其电化学性能研究

关贵清 邹明忠 冯倩 林建平 黄志高 颜桂炀

关贵清, 邹明忠, 冯倩, 林建平, 黄志高, 颜桂炀. Fe3O4/RGO复合材料的制备及其电化学性能研究[J]. 燃料化学学报(中英文), 2017, 45(3): 362-369.
引用本文: 关贵清, 邹明忠, 冯倩, 林建平, 黄志高, 颜桂炀. Fe3O4/RGO复合材料的制备及其电化学性能研究[J]. 燃料化学学报(中英文), 2017, 45(3): 362-369.
GUAN Gui-qing, ZOU Ming-zhong, FENG Qian, LIN Jian-ping, HUANG Zhi-gao, YAN Gui-yang. Synthesis of Fe3O4/RGO composites and their electrochemical performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 362-369.
Citation: GUAN Gui-qing, ZOU Ming-zhong, FENG Qian, LIN Jian-ping, HUANG Zhi-gao, YAN Gui-yang. Synthesis of Fe3O4/RGO composites and their electrochemical performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 362-369.

Fe3O4/RGO复合材料的制备及其电化学性能研究

基金项目: 

国家自然科学基金 21473096

国家自然科学基金 21603112

福建省省属高校专项课题 JK2014055

宁德市科技计划项目 20140218

宁德市科技计划项目 20150169

详细信息
    通讯作者:

    关贵清, E-mail:782876177@qq.com

    颜桂炀, E-mail:ygyfjnu@163.com

  • 中图分类号: O64

Synthesis of Fe3O4/RGO composites and their electrochemical performance

Funds: 

the National Natural Science Foundation of China 21473096

the National Natural Science Foundation of China 21603112

the Special Project for Fujian Provincial Universities JK2014055

the Research Project of Science and Technology of Ningde City 20140218

the Research Project of Science and Technology of Ningde City 20150169

  • 摘要: 以改进Hummers法合成的氧化石墨烯(GO)为前驱体,通过水热法结合烧结工艺制备了四氧化三铁/还原氧化石墨烯(Fe3O4/RGO)复合材料。利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)、透射电镜(TEM)等手段对复合材料的理化性能进行表征;通过充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)等技术,综合考察了材料的储锂性能及电化学性能增强机制。结果表明,在200和600 mA/g电流密度下,Fe3O4/RGO复合负极循环60次后的放电比容量分别保持在709和479 mAh/g,表现出良好的倍率性能;相较于纯Fe3O4负极,复合负极呈现出更优异的锂电性能,其电化学性能的改善得益于RGO能增强材料的电导性和结构稳定性。
  • 图  1  GO (a)、RGO (b)、纯Fe3O4(c)、Fe3O4/RGO复合材料 (d) 的XRD谱图以及Fe3O4/RGO复合材料 (e) 的TGA曲线

    Figure  1  XRD patterns of GO (a), RGO (b), pure Fe3O4 (c) and Fe3O4/RGO composite (d) as well as TGA curves of the Fe3O4/RGO composite (e)

    图  2  Fe3O4/RGO复合物的Raman谱图

    Figure  2  Raman spectra of the Fe3O4/RGO composite

    图  3  RGO (a)、(b) 及Fe3O4/RGO复合物 (c)、(d) 的扫描电镜照片

    Figure  3  SEM images of RGO (a), (b) and Fe3O4/RGO composite (c), (d)

    图  4  Fe3O4/RGO复合物的TEM ((a)、(b))、HR-TEM (c) 及对应的SAED (d) 照片

    Figure  4  TEM images ((a), (b)), HR-TEM images (c) and the corresponding SAED patterns (d) of the Fe3O4/RGO composites

    图  5  RGO的循环伏安曲线 (a) 及其充放电曲线 (b)

    Figure  5  Cyclic voltammetry curves (a) and discharge/charge curves (b) of the RGO electrodes

    图  6  Fe3O4和Fe3O4/RGO的循环伏安曲线及其对应的充放电曲线

    Figure  6  Cyclic voltammetry curves and discharge/charge profiles of the Fe3O4 (a), (b) and Fe3O4/RGO electrodes (c), (d)

    图  7  RGO、纯Fe3O4以及Fe3O4/RGO电极的循环测试

    Figure  7  Discharge/charge cycling performance of RGO, pure Fe3O4 and Fe3O4/RGO electrodes

    (a): at a current density of 200 mA/g; (b): at a current density of 600 mA/g

    图  8  RGO、纯Fe3O4以及Fe3O4/RGO电极的倍率性能测试

    Figure  8  Rate performance of RGO, pure Fe3O4 and Fe3O4/RGO electrodes

    图  9  Fe3O4和Fe3O4/RGO电极在长循环后的交流阻抗图谱及对应的等效电路示意图

    Figure  9  EIS and equivalent circuit of Fe3O4 and Fe3O4/RGO electrodes after long cycling

    表  1  Fe3O4和Fe3O4/RGO电极在长循环后的交流阻抗图谱对应的电路参数数值

    Table  1  Parameters of an equivalent circuit of Fe3O4 and Fe3O4/RGO electrodes after long cycling.

    Re Rsf Rct DLi+ /(cm2·S-1)
    Fe3O4 17.65 272.4 456.02 5.18×10-8
    Fe3O4/RGO 15.21 123.4 254.58 1.03×10-7
    下载: 导出CSV
  • [1] POIZOT P, LARUELLE S, GRUGEON S, DUPON L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803):496-499. doi: 10.1038/35035045
    [2] TABERNA P L, MITRA S, POIZOT P, SIMON P, TARASCON J M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nat Mater, 2006, 5(7):567-573. doi: 10.1038/nmat1672
    [3] LIU H, WANG G X, WANG J Z, WEXLER D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries[J]. Electrochem Comm, 2008, 10(12):1879-1882. doi: 10.1016/j.elecom.2008.09.036
    [4] ZHANG W M, WU X L, HU J S, GUO Y G, WAN L J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Adv Funct Mater, 2008, 18(24):3941-3946. doi: 10.1002/adfm.v18:24
    [5] CHEN J, XU L N, LI W Y, GOU X L.α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Adv Mater, 2005, 17(17):582-586.
    [6] REDDY M V, YU T, SOW C H, SHEN Z X, LIM CT, RAO S G V, CHOWDARI B V R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries[J]. Adv Funct Mater, 2007, 17(15):2792-2799. doi: 10.1002/(ISSN)1616-3028
    [7] LARCHER D, MASQUELIER C, BONNIN D, CHABRE Y, MASSON V, LERICHE J B, TARASCON J M. Effect of particle size on lithium intercalation into α Fe2O3[J]. J Electrochem Soc, 2003, 150(1):A133-A139. doi: 10.1149/1.1528941
    [8] WU Y, WEI Y, WANG J P, JIANG K L, FAN S S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high performance anodes for lithium ion batteries[J]. Nano Lett, 2013, 13(2):818-823. doi: 10.1021/nl3046409
    [9] KANG E, JUNG Y S, CAVANAGH A S, KIM G H, GEORGE S M, DILLON A C, KIM J K, LEE J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries[J]. Adv Funct Mater, 2011, 21(13):2430-2438. doi: 10.1002/adfm.201002576
    [10] BAN C M, WU Z C, GILLASPIE D T, CHEN LE, YAN Y F, BLACKBURN J L, DILLON A C. Nanostructured Fe3O4/SWNT electrode:Binder free and high-rate Li-ion anode[J]. Adv Mater, 2010, 22(20):E145-E149. doi: 10.1002/adma.200903650
    [11] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, KATSNELSON M I, GRIGORIEVA I V, DUBONOS S V, FIRSOV A A. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200. doi: 10.1038/nature04233
    [12] ANNALISA F, LOS J H, KATSNELSON MIKHAIL I. Intrinsic ripples in graphene[J]. Nat Mater, 2007, 6(11):858-861. doi: 10.1038/nmat2011
    [13] YANG S B, FENG X L, WANG L, TANG K, MAIER J, MLLEN K. Graphene-based nanosheets with a sandwich structure[J]. Angew Chem Int Ed, 2010, 49(28):4795-4799. doi: 10.1002/anie.201001634
    [14] YOO E J, KIM J, HOSONO E, ZHOU H S, KUDO T, HONMA I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithiumion batteries[J]. Nano Lett, 2008, 8(8):2277-2279. doi: 10.1021/nl800957b
    [15] ZHOU G M, WANG D W, LI F, ZHANG L L, LI N, WU Z S, WEN L, LU G Q (MAX), CHENG H M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem Mater, 2010, 22(18):5306-5313. doi: 10.1021/cm101532x
    [16] FU C J, ZHAO G G, ZHANG H J, LI S. A Facile route to controllable synthesis of Fe3O4/graphene composites and their application in lithium-ion batteries[J]. Int Electrochem Sci, 2014, 9(1):46-60.
    [17] SUBRAMANI B, PARAKANDY M P, SRINIVASAN A, DINESH R, RAGHAVAN G, TATA N R. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J]. Chem Phys, 2014, 16(11):5284-5294.
    [18] LI, J XZOU M Z, WEN W W, ZHAO Y, LIN Y B, CHEN L Z, LAI H, GUAN L H, HUANG Z G. Spinel MFe2O4 (M=Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li-O2 batteries[J]. J Mater Chem A, 2014, 2(26):10257-10262. doi: 10.1039/c4ta00960f
    [19] ZHAO Y, LI J X, DING Y H, GUAN L H. Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+[J]. J Mater Chem, 2011, 21(21):19101-19105.
    [20] ZHAO Y, LI J X, WU C X, GUAN L H. A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials[J]. Nanoscale Res Lett, 2011, 6:71-75. https://www.researchgate.net/publication/51450487_A_general_strategy_for_synthesis_of_metal_oxide_nanoparticles_attached_on_carbon_nanomaterials
    [21] SHEBANOVA O N, PETER L. Raman study of agnetite (Fe3O4):Laser-induced thermal effects and oxidation[J]. J Raman Spectrosc, 2003, 34:845-852. doi: 10.1002/(ISSN)1097-4555
    [22] AMODINI M, TANUJA M. Analysis of surface potential and magnetic properties of Fe3O4/graphene oxide nanocomposites[C]. AIP Conference Proceedings, 2016, 1731(1):050010.
    [23] FU C J, ZHAO G G, ZHANG H J, LI S. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries[J]. Int J Electrochem Sci, 2013, 8(5):6269-6280. https://www.researchgate.net/publication/285636501_Evaluation_and_Characterization_of_Reduced_Graphene_Oxide_Nanosheets_as_Anode_Materials_for_Lithium-Ion_Batteries
    [24] LI J X, ZOU M Z, ZHAO YI, LIN Y B, LAI H, GUAN L H, HUANG Z G. Coaxial MWNTs@MnO2 confined in conducting PPy for kinetically efficient and long-term lithium ion storage[J]. Electrochim Acta, 2013, 111(6):165-171.
    [25] ZOU M Z, WEN W W, LI J X, LIN Y B, LAI H, HUANG Z G. Nano-crystalline FeOOH mixed with SWNT matrix as a superior anode material for lithium batteries[J]. J Energy Chem, 2014, 23(4):513-518. doi: 10.1016/S2095-4956(14)60179-0
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  46
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-01-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回