留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢在活性炭、石墨烯和金属有机骨架上的吸附平衡

朱子文 郑青榕 陈武 王泽浩 张维东

朱子文, 郑青榕, 陈武, 王泽浩, 张维东. 氢在活性炭、石墨烯和金属有机骨架上的吸附平衡[J]. 燃料化学学报(中英文), 2018, 46(5): 625-632.
引用本文: 朱子文, 郑青榕, 陈武, 王泽浩, 张维东. 氢在活性炭、石墨烯和金属有机骨架上的吸附平衡[J]. 燃料化学学报(中英文), 2018, 46(5): 625-632.
ZHU Zi-wen, ZHENG Qing-rong, CHEN Wu, WANG Ze-hao, ZHANG Wei-dong. Analysis of the hydrogen adsorption behavior on the typical adsorbing materials[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 625-632.
Citation: ZHU Zi-wen, ZHENG Qing-rong, CHEN Wu, WANG Ze-hao, ZHANG Wei-dong. Analysis of the hydrogen adsorption behavior on the typical adsorbing materials[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 625-632.

氢在活性炭、石墨烯和金属有机骨架上的吸附平衡

基金项目: 

国家自然科学基金 51679107

厦门市科技计划 3502Z20173026

详细信息
  • 中图分类号: O647.32

Analysis of the hydrogen adsorption behavior on the typical adsorbing materials

Funds: 

the National Natural Science Foundation of China 51679107

Science and Technology Bureau of Xiame 3502Z20173026

More Information
  • 摘要: 为比较不同物理吸附材料的结构参数对其储氢性能的影响,制备和选取了具有超高比表面积的活性炭、石墨烯以及金属有机骨架(MOFs)作为低温吸附储氢的典型材料。首先,利用77 K下氮气在材料上的吸附数据确定了其BET比表面积以及孔径分布的主要结构参数。其次,利用3Flex全自动微孔吸附仪在77-87 K测试了0-0.1 MPa低压下氢在各材料上的吸附量,而后在0.1-8 MPa高压条件下利用PCTPro测试了氢在各材料上的过剩吸附量。最后,分析了各材料的储氢量与其结构参数间的关系。结果表明,在低压下,影响物理吸附材料储氢量的主要因素为孔径分布小于1 nm的微孔;而高压下,氢在多孔材料上的最大过剩吸附量与材料的BET比表面积呈正相关关系,斜率为0.0059 mmol/m2
  • 图  1  77 K下活性炭、GS和MOFs材料的氮气吸附等温线

    Figure  1  Adsorption/desorption isotherms of nitrogen at 77 K on the activated carbon, GS and MOFs

    图  2  通过运用H-K方法分析氮气在77 K温度下吸附等温线得到活性炭、GS和MOFs材料的PSD

    Figure  2  PSD of the activated carbon, GS and MOFs determined by analyzing adsorption isotherms of nitrogen at 77 K by H-K method

    图  3  77 K、0-0.1 MPa条件下,活性炭、GS和MOFs材料的氢气过剩吸附等温线

    Figure  3  Isotherms of excess amount of hydrogen absorbed on the activated carbon, GS and MOFs at 77 K and 0-0.1 MPa

    图  4  87 K、0-0.1 MPa条件下,活性炭、GS和MOFs材料的氢气过剩吸附等温线

    Figure  4  Isotherms of excess amount of hydrogen absorbed on the activated carbon, GS and MOFs at 87 K and 0-0.1 MPa

    图  5  77 K、0.1-8 MPa条件下,活性炭、GS和MOFs材料的氢气过剩吸附等温线

    Figure  5  Isotherms of excess amount of hydrogen absorbed on the activated carbon, GS and MOFs at 77 K and 0.1-8 MPa

    图  6  活性炭、GS和MOFs材料上的氢过剩吸附量与其平均孔宽的关系(77 K和0.1 MPa)

    Figure  6  Excess hydrogen uptake of the activated carbon, GS and MOFs vs mean pore width (77 K and 0.1 MPa) : excess uptake piont

    图  7  活性炭、GS和MOFs在77 K时氢的最大过剩吸附量与BET比表面积的关系

    Figure  7  Maximum excess capacity of the activated carbon, GS and MOFs at 77 K vs BET surface area

    表  1  活性炭、GS和MOFs材料的结构表征参数

    Table  1  Structural properties of the activated carbon, GS and MOFs

    Sample ABET(a) /(m2·g-1) vmico(b)/(cm3·g-1) Mean pore width(b) d/nm
    SAC-02F 1730 0.62 0.96
    AC-042 2310 0.71 0.95
    GS2D 2000 0.61 0.93
    GS 220 0.07 1.1
    HKUST-1 1850 0.77 0.7
    MOF-5(M) 3320 1.26 1.05
    MOF-5(S) 1100 0.42 0.63
    MIL-101(Cr) 3200 1.05 1.04
    MIL-53(Al) 1500 0.6 0.73
    ZIF-8 1620 0.54 1.07
    note:(a): ABET was determined by the equilibrium data in the range of p/p0=0.05-0.15; (b): H-K method
    下载: 导出CSV

    表  2  氢在多孔材料上的极限吸附热和吸附量

    Table  2  Isosteric heat of adsorption and hydrogen adsorption capacity on porous materials

    Sample qst0/(kJ·mol-1) H2 uptake at low pressure/(mmol·g-1)(a) Maximum excess adsorption/(mmol·g-1)(b)
    SAC-02F 6.28 8.58(6.06) 14.82
    AC-042 7.17 10.16(6.65) 21.78
    GS2D 6.82 8.34(6.39) 17.45
    GS 6.40 1.12(0.73) 5.02
    HKUST-1 7.59 10.31(6.38) 19.69
    MOF-5(M) 7.86 5.68(3.48) 25.65
    MOF-5(S) 8.52 10.17(6.36) 12.18
    MIL-101(Cr) 7.20 8.67(5.54) 20.76
    MIL-53(Al) 6.08 9.11(5.92) 14.07
    ZIF-8 5.25 6.46(3.28) 15.76
    (a): H2 uptake at 77 K(87 K) and 0.1MPa; (b):maximum excess adsorption can be accurately determined by the toth equation[27]
    下载: 导出CSV
  • [1] AHLUWALIA R K, PENG J K. Automotive hydrogen storage system using cryo-adsorption on activated carbon[J]. Int J Hydrogen Energy, 2009, 34(13):5476-87. doi: 10.1016/j.ijhydene.2009.05.023
    [2] SCHLICHTENMAYER M, HIRSCHER M. The usable capacity of porous materials for hydrogen storage[J]. Appl Phys A-Mater, 2016, 122(4):379. doi: 10.1007/s00339-016-9864-6
    [3] CHENG D W, TE H F, LO J Y. Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity[J]. Int J Hydrogen Energy, 2012, 37(19):14211-14216. doi: 10.1016/j.ijhydene.2012.07.040
    [4] SRINIVAS G, ZHU Y, PINER R, SKIPPER N, ELLERBY M, RUOFF R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity[J]. Carbon, 2010, 48(3):630-635. doi: 10.1016/j.carbon.2009.10.003
    [5] ZHENG Q, JI X, GAO S, WANG X. Analysis of adsorption equilibrium of hydrogen on graphene sheets[J]. Int J Hydrogen Energy, 2013, 38(25):10896-10902. doi: 10.1016/j.ijhydene.2013.01.098
    [6] 袁文辉, 刘晓晨, 顾叶剑, 占亮, 李保庆, 李莉.高真空低温剥离法制备高储氢性能石墨烯[J].功能材料, 2013, 44(1):17-21. http://d.wanfangdata.com.cn/Periodical_gncl201301004.aspx

    YUAN Wen-hui, LIU Xiao-chen, GU Ye-jian, ZHAN Liang, LI Bao-qing, LI li. Preparation of high hydrogen storage capacity graphene based on low-temperature exfoliation under high vacuum[J]. J Functional Mater, 2013, 44(1):17-21. http://d.wanfangdata.com.cn/Periodical_gncl201301004.aspx
    [7] ROSI N L, ECKER J, EDDAOUDI M, VODAK D, KIM J, O'KEEFFE M, YAGHI O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622):1127-1129. doi: 10.1126/science.1083440
    [8] Hydrogen storage engineering center of excellence (HSCoE)[OL]. https://www.hydrogen.energy.gov/pdfs/progress14/iv_b_1_anton_2014.pdf.
    [9] HWANG H T, VARMA A. Hydrogen storage for fuel cell vehicles[J]. Curr Opin Chem Eng, 2014, 5:42-48. doi: 10.1016/j.coche.2014.04.004
    [10] CHAHINEB R, RICHARDC M C, GARRISONA S, TAMBURELLOA D, COSSEMENTB D, ANTON D. Modeling of adsorbent based hydrogen storage systems[J]. Int J Hydrogen Energy, 2012, 37(7):5691-5705. doi: 10.1016/j.ijhydene.2011.12.125
    [11] PUREWALAB J J, LIU D, YANG J, SUDIKA A, SIEGELB J, MAURERC S, MVLLERC U. Increased volumetric hydrogen uptake of MOF-5 by powder densification[J]. Int J Hydrogen Energy, 2012, 37(3):2723-2727. doi: 10.1016/j.ijhydene.2011.03.002
    [12] YANG S J, JI H I, NISHIHARA H, JUNG H, LEE K, KYOTANI T. General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents[J]. J Phys Chem C, 2012, 116(19):10529-10540. doi: 10.1021/jp302304w
    [13] NOGUERA-DÍAZ A, BIMBO N, HOLYFIELD L T, AHMET I Y, TING V P, MAYS T J. Structure-property relationships in metal-organic frameworks for hydrogen storage[J]. Colloid Surface A, 2016, 496(5):77-85. http://www.research.lancs.ac.uk/portal/en/publications/-(b4a6fb05-90eb-4ecd-af62-e922759a0b0e).html
    [14] GÓMEZGUALDRÓN D A, COLÓN Y J, ZHANG X, WANG T C, CHEN Y S, HUPP J T.Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energy Environ Sci, 2016, 9(10):3279-3289. doi: 10.1039/C6EE02104B
    [15] PETITPAS G, BÉNARD P, KLEBANOFF L E, XIAO J, ACEVES S. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods[J]. Int J Hydrogen Energy, 2014, 39(20):10564-10584. doi: 10.1016/j.ijhydene.2014.04.200
    [16] LV D, CHEN Y, LI Y, SHI R, WU H, SUN X. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption[J]. J Chem Eng Data, 2017, 62(7):2030-2036. doi: 10.1021/acs.jced.7b00049
    [17] WANG Z, SUN L, XU F, ZHOU H, PENG X, SUN D. Nitrogen-doped porous carbons with high performance for hydrogen storage[J]. Int J Hydrogen Energy, 2016, 41(20):8489-8497. doi: 10.1016/j.ijhydene.2016.03.023
    [18] 赵祯霞. 金属有机骨架MOF-5膜的制备及其CO2气体渗透分离性能[D]. 广州: 华南理工大学, 2009.

    ZHAO Zhen-xia. Preparation and CO2 premselectivity performance of metal organic framework (MOF-5) membrane[D]. Guangzhou: South China University of Technology, 2009.
    [19] 李玉洁, 苗晋朋, 孙雪娇, 肖静, 夏启斌, 奚红霞, 李忠.机械化学法合成金属有机骨架材料HKUST-1及其吸附苯性能[J].化工学报, 2015, 66(2):793-799. doi: 10.11949/j.issn.0438-1157.20141127

    LI Yu-jie, MIAO Jin-peng, SUN Xue-jiao, XIAO Jing, XIA Qi-bin, XI Hong-xia, LI Zhong. Mechano-chemical synthesis of HKUST-1 with high capacity of benzene adsorptiorption[J]. CIESC J, 2015, 66(2):793-799. doi: 10.11949/j.issn.0438-1157.20141127
    [20] 郭金涛, 陈勇, 荆钰, 王重庆, 马正飞.以醋酸盐为矿化剂合成金属有机骨架MIL-101[J].高等学校化学学报, 2012, 33(4):668-672. doi: 10.3969/j.issn.0251-0790.2012.04.005

    GUO Jin-tao, CHEN Yong, JING Yu, WANG Chong-qing, MA Zheng-fei. Synthesize material institut lavoisier-101(MIL-101) by acetate as mineralizer[J]. Chem J Chin Univ, 2012, 33(4):668-672. doi: 10.3969/j.issn.0251-0790.2012.04.005
    [21] 孙丽娜, 尹作娟, 张晓彤, 宋丽娟, 段林海. MIL-53的合成和表征及储氢性能研究[J].石油化工高等学校学报, 2010, 23(1):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx201001010

    SUN Li-na, YI Zuo-juan, ZHANG Xiao-tong, SONG Li-juan, DUAN Lin-hai. Synthesis, characterization and hydrogen storage capacity of MIL-53[J]. J Petrochem Univ, 2010, 23(1):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx201001010
    [22] 刘明明, 吕文苗, 史秀锋, 范彬彬, 李瑞丰.不同方法合成的沸石咪唑酯骨架结构材料(ZIF-8)的表征和催化性能[J].无机化学学报, 2014, 30(3):579-584. http://www.cnki.com.cn/Article/CJFDTotal-WJHX201403017.htm

    LIU Ming-ming, LV Weng-miao, SHI Xiu-feng, FAN Bin-bin, LI Rui-feng. Characterization and catalytic performance of zeolitic imidazolate framework-8(ZIF-8) synthesized by different methods[J]. Chin J Inorg Chem, 2014, 30(3):579-584. http://www.cnki.com.cn/Article/CJFDTotal-WJHX201403017.htm
    [23] 李玉洁. CPLs柔性温敏材料和GO@MOF-5复合材料的制备及其吸附分离碳氢化合物性能[D]. 广州: 华南理工大学, 2016.

    LI Yu-jie. The synthesis of CPLs and GO@MOF-5 composites and their adsorption/separation performance toward hydrocarbons[D]. Guangzhou: South China University of Technology, 2016.
    [24] ZHU Z W, ZHENG Q R, WANG Z H, TANG Z, CHEN W. Hydrogen adsorption on graphene sheets and nonporous graphitized thermal carbon black at low surface coverage[J]. Int J Hydrogen Energy, 2017, 42(29):18465-18472. doi: 10.1016/j.ijhydene.2017.04.173
    [25] 朱子文, 冯玉龙, 郑青榕.甲烷在石墨烯和活性炭上的吸附[J].化工学报, 2015, 66(s2):244-249. doi: 10.11949/j.issn.0438-1157.20150685

    ZHU Zi-wen, FENG Yu-long, ZHENG Qing-rong. Methane adsorption on graphene sheets and activated carbon[J]. CIESC Journal, 2015, 66(s2):244-249. doi: 10.11949/j.issn.0438-1157.20150685
    [26] SETHIA G, SAYARI A. Activated carbon with optimum pore size distribution for hydrogen storage[J]. Carbon, 2016, 99:289-294. doi: 10.1016/j.carbon.2015.12.032
    [27] 高帅, 郑青榕.甲烷在活性炭上吸附平衡模型的研究[J].燃料化学学报, 2013, 41(3):380-384. http://www.ccspublishing.org.cn/article/id/100032879

    GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption models for methane adsorption equilibrium on activated carbon[J]. J Chem Technol, 2013, 41(3):380-384. http://www.ccspublishing.org.cn/article/id/100032879
    [28] SANG S H, MENDOZA-CORTES J L, GODDARD W A I. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1460-76. doi: 10.1039/b802430h
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  39
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-14
  • 修回日期:  2018-03-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回