留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究

卢培静 蔡夫锋 张军 刘予宇 孙予罕

卢培静, 蔡夫锋, 张军, 刘予宇, 孙予罕. B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报(中英文), 2019, 47(7): 791-798.
引用本文: 卢培静, 蔡夫锋, 张军, 刘予宇, 孙予罕. B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报(中英文), 2019, 47(7): 791-798.
LU Pei-jing, CAI Fu-feng, ZHANG Jun, LIU Yu-yu, SUN Yu-han. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 791-798.
Citation: LU Pei-jing, CAI Fu-feng, ZHANG Jun, LIU Yu-yu, SUN Yu-han. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 791-798.

B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究

基金项目: 

国家重点研发计划 2016YFA0202802

详细信息
  • 中图分类号: O643

Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts

Funds: 

the China Ministry of Science and Technology 2016YFA0202802

More Information
  • 摘要: 采用共沉淀法制备CuZnAlOx(CZA)催化剂,通过浸渍法得到一系列不同硼(B)负载量的yB/CZA(y=0.28%、0.38%、0.73%、0.89%和4.10%,质量分数)催化剂,并将其用于甲醇水蒸气重整制氢反应。此外,为探究催化剂的构效关系,采用ICP、BET、SEM、N2O化学吸附、TEM、XRD、H2-TPR和XPS等手段对催化剂进行表征。结果表明,B引入主要影响催化剂的Cu分散性、还原性及Cu-B间相互作用,进而影响甲醇水蒸气重整制氢性能。其中,0.38B/CZA催化剂获得最高催化活性,这与其具有较高的Cu分散性与较强的Cu-B相互作用力有关;在反应温度为250℃,n(H2O):n(CH3OH)=3,空速为9000 mL/(g·h)时,CH3OH转化率达到93%,CO选择性仅有0.3%,且反应102 h后仍未失活。
  • 图  1  还原后yB/CZA催化剂的TEM照片

    Figure  1  TEM images of yB/CZA catalysts

    Bright field: (a): CZA; (c): 0.38B/CZA; (e): 4.10B/CZA
    Dark field : (b): CZA; (d): 0.38B/CZA; (f): 4.10B/CZA

    图  2  焙烧后yB/CZA催化剂的XRD谱图

    Figure  2  XRD patterns of yB/CZA catalysts upon calcination

    a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
    d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA

    图  3  还原后yB/CZA催化剂的XRD谱图

    Figure  3  XRD patterns of yB/CZA catalysts upon reduction

    a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
    d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA

    图  4  yB/CZA催化剂的H2-TPR谱图

    Figure  4  H2-TPR patterns of yB/CZA catalysts

    a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
    d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA

    图  5  还原后yB/CZA催化剂的Cu 2p XPS谱图

    Figure  5  Cu 2p XPS profiles of reduced yB/CZA catalysts

    a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
    d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA

    图  6  还原后yB/CZA催化剂B 1s的XPS谱图

    Figure  6  B 1s XPS profiles of reduced yB/CZA catalysts

    a: 0.28B/CZA; b: 0.38B/CZA; c: 0.73B/CZA;
    d: 0.89B/CZA; e: 4.10B/CZA

    图  7  反应温度对甲醇转化率的影响

    Figure  7  Methanol conversion as a function of temperature

    a: CZA; b : 0.28B/CZA; c: 0.38B/CZA;
    d: 0.73B/CZA; e: 0.89B/CZA; f: 4.10B/CZA
    n(H2O)/n(CH3OH)=3;
    feed rate of liquid mixture, 0.03 mL/min;
    GHSV=9000 mL/(g·h); catalyst mass, 0.4 g;
    preheater temperature, 300 ℃

    图  8  (a) 0.38B/CZA稳定性测试,(b)新鲜0.38B/CZA催化剂明场TEM照片(c)反应后0.38B/CZA催化剂明场TEM照片,(d)反应后0.38B/CZA催化剂暗场TEM照片

    Figure  8  (a): time on stream performance of 0.38B/CZA catalyst, (b) bright field TEM images of fresh 0.38B/CZA catalyst, (c) bright field TEM images of spent 0.38B/CZA catalyst, (d) dark field TEM images of spent 0.38B/CZA catalyst

    表  1  yB/CZA样品的物理性质与化学组成

    Table  1  Physicochemical properties and chemical compositions of the yB/CZA

    Catalyst Cu contenta w/% B contenta w/% ABET /(m2·g-1) vpore / (cm3·g-1) dCub /nm Cu dispersionc /% Acuc /(m2·g-1)
    CZA 40.1 - 104 0.31 6.7 8.8 59.4
    0.28B/CZA 39.8 0.28 115 0.31 5.7 9.0 61.0
    0.38B/CZA 38.8 0.38 171 0.38 4.6 11.8 80.0
    0.73B/CZA 38.5 0.73 107 0.30 4.9 6.5 36.9
    0.89B/CZA 38.2 0.89 84 0.30 5.1 5.3 35.9
    4.10B/CZA 37.1 4.10 38 0.30 5.4 3.6 24.4
    a: determined by ICP-OES; b: average Cu particle size calculated by XRD; c: determined by N2O chemisorption
    下载: 导出CSV
  • [1] NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renewable Sustainable Energy Rev, 2017, 67(Supplement C):597-611.
    [2] SANDRA S Á, SILVA H, BRANDÃO L, SOUSA J, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010, 99(1/2):43-57.
    [3] FRANK B, JENTOFT F, SOERIJANTO H, KROHNERT J, SCHLOGL R, SCHOMACKER R. Steam reforming of methanol over copper-containing catalysts:Influence of support material on microkinetics[J]. J Catal, 2007, 246(1):177-192.
    [4] LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, ZHENG J, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648):80-83. doi: 10.1038/nature21672
    [5] XU T, ZOU J, TAO W, ZHANG S, CUI L, ZENG F, WANG D, CUI W. Co-nanocasting synthesis of Cu based composite oxide and its promoted catalytic activity for methanol steam reforming[J]. Fuel, 2016, 183:238-244. doi: 10.1016/j.fuel.2016.06.081
    [6] TAGHIZADEH M, AKHOUNDZADEH H, REZAYAN A, SADEGHIAN M. Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming[J]. Int J Hydrogen Energy, 2018, 43(24):10926-10937. doi: 10.1016/j.ijhydene.2018.05.034
    [7] TALKHONCHEH S, HAGHIGHI M, MINAEI S, AJAMEIN H, ABDOLLAHIFAR M. Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production[J]. RSC Adv, 2016, 6(62):57199-57209. doi: 10.1039/C6RA03858A
    [8] KHZOUZ M, GKANAS E, DU S, WOOD J. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming[J]. Fuel, 2018, 232:672-683. doi: 10.1016/j.fuel.2018.06.025
    [9] YONG S, OOI C, CHAI S, WU X. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms and reaction schemes[J]. Int J Hydrogen Energy, 2013, 38(22):9541-9552. doi: 10.1016/j.ijhydene.2013.03.023
    [10] LIU X, MEN Y, WANG J, HE R, WANG Y. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J]. J Power Sources, 2017, 364(Supplement C):341-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2904efa2961241d0470b04379da0d266
    [11] CHANG C, CHANG C, CHIANGS J, LIAW B, CHEN Y. Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Int J Hydrogen Energy, 2010, 35(15):7675-7683. doi: 10.1016/j.ijhydene.2010.05.066
    [12] MATTER P, OZKAN U. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2):463-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8ae5de8f3c877f9e7ac464a299c4bf6
    [13] GANG H, LIAW B, JHANG C, CHEN Y. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A:Gen, 2009, 358(1):7-12. doi: 10.1016/j.apcata.2009.01.031
    [14] TOYIR J, PISCINA P, HOMS N. Ga-promoted copper-based catalysts highly selective for methanol steam reforming to hydrogen; relation with the hydrogenation of CO2 to methanol[J]. Int J Hydrogen Energy, 2015, 40(34):11261-11266. doi: 10.1016/j.ijhydene.2015.04.039
    [15] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学报, 2018, 46(2):179-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201802007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188.). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201802007
    [16] PARK J, YIM S, KIM C, PARK E. Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst[J]. Int J Hydrogen Energy, 2014, 39(22):11517-11527. doi: 10.1016/j.ijhydene.2014.05.130
    [17] MINAEI S, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming[J]. Adv Powder Technol, 2017, 28:(3) 842-853. doi: 10.1016/j.apt.2016.12.010
    [18] BAGHERZADEH S, HAGHIGHI M, RAHEM N. Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol:Influence of ceria-zirconia loading[J]. Energy Convers Manage, 2017, 134:88-102. doi: 10.1016/j.enconman.2016.12.005
    [19] NANDA M, YUAN Z, SHUI H, XU C. Selective hydrogenolysis of glycerol and crude glycerol (a By-Product or Waste Stream from the Biodiesel Industry) to 1, 2-propanediol over B2O3 promoted Cu/Al2O3 catalysts[J]. Catalysts, 2017, 7(7):196. doi: 10.3390/catal7070196
    [20] ZHU S, GAO X, ZHU Y, ZHU Y, ZHENG H, LI Y. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1, 2-propanediol[J]. J Catal, 2013, 303(7):70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b529db371cc345be112c58209164f129
    [21] AI P, TAN M, YAMANE N, LIU G, FAN R, YANG G, YONEYAMA Y, YANG R, TSUBAKI N. Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chem Eur J, 2017, 23(34):8252-8261. doi: 10.1002/chem.v23.34
    [22] HE Z, LIN H, HE P, YUAN Y. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011, 277(1):54-63. doi: 10.1016/j.jcat.2010.10.010
    [23] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学报, 2018, 46(8):992-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201808011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201808011
    [24] ZHAO S, YUE H, ZHAO Y, WANG B, GENG Y, LV J, WANG S, GONG J, MA X. Chemoselective synthesis of ethanol via hydrogenation of dimethyl; oxalate on Cu/SiO2:Enhanced stability with boron dopant[J]. J Catal, 2013, 297(1):142-150.
    [25] AJAMEIN H, HAGHIGHI M, SHOKRANI R, ABDOLLAHIFAR M. On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming:Effect of precursor, ultrasound irradiation and urea/nitrate ratio[J]. J Mol Catal A:Chem, 2016, 421:222-234. doi: 10.1016/j.molcata.2016.05.028
    [26] FIGEN A. Dehydrogenation characteristics of ammonia boraneviaboron-basedcatalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions[J]. Int J Hydrogen Energy, 2013, 38(22):9186-9197. doi: 10.1016/j.ijhydene.2013.05.081
    [27] WU J, SAITO M, MABUSE H. Activity and stability of Cu/ZnO/Al2O3 catalyst promoted with B2O3 for methanol synthesis[J]. Catal Lett, 2000, 68(1):55-58.
    [28] GAO P, ZHONG L, ZHANG L, WANG H, ZHAO N, WEI W, SUN Y. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Sci Technol, 2015, 5(9):4365-4377. doi: 10.1039/C5CY00372E
    [29] YIN A, QU J, GUO X, DAI W, FAN K. The influence of B-doping on the catalytic performance of Cu/HMS catalyst for the hydrogenation of dimethyloxalate[J]. Appl Catal A:Gen, 2011, 400(1):39-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=609da5c1e6a7050c5c913a78b745c944
    [30] SHOKRANI P, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method[J]. Int J Hydrogen Energy, 2014, 39(25):13141-13155. doi: 10.1016/j.ijhydene.2014.06.048
    [31] CHEN H, TAN J, CUI J, YANG X, ZHENG H, ZHU Y, LI Y. Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Mol Catal, 2017, 433:346-353. doi: 10.1016/j.mcat.2017.02.039
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  47
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-04-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回