留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟

厉志鹏 牛胜利 赵改菊 韩奎华 李英杰 路春美 程屾

厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报(中英文), 2020, 48(2): 172-178.
引用本文: 厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报(中英文), 2020, 48(2): 172-178.
LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 172-178.
Citation: LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 172-178.

Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟

基金项目: 

国家自然科学基金 51876106

山东省重点研发计划 2018GGX104027

山东大学青年学者未来计划资助项目 2015WLJH33

齐鲁工业大学(山东省科学院)青年博士合作基金项目 2018BSHZ0017

详细信息
  • 中图分类号: TK6

Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface

Funds: 

The project was supported by the National Natural Science Foundation of China 51876106

Primary Research & Development Plan of Shandong Province 2018GGX104027

Young Scholars Program of Shandong University 2015WLJH33

Qilu University of Technology(Shandong Academy of Sciences) Youth PhD Cooperation Fund Project 2018BSHZ0017

More Information
  • 摘要: 借助分子模拟手段,研究了锶掺杂对氧化钙表面甲醇吸附行为的影响。构建了甲醇在CaO(100)和CaO(100)-Sr表面吸附的模型,计算了甲醇在氧化钙表面的吸附能和解离活化能,分析了甲醇在氧化钙表面成键的态密度以及锶掺杂前后甲醇在氧化钙表面电荷布局和差分电荷密度,评估了锶掺杂量对氧化钙表面甲醇吸附性能的影响。结果表明,锶掺杂能够显著强化氧化钙对甲醇的吸附性能,降低甲醇的解离活化能,且吸附性能随锶掺杂量的增加而增强;甲醇在氧化钙表面吸附时活化,锶掺杂后活化程度增加。
  • 图  1  CaO(100)和CaO(100)-Sr模型

    Figure  1  Surface structure of CaO(100) (a) and CaO(100)-Sr (b)

    图  2  甲醇构型

    Figure  2  Structure of methanol molecule in gas phase

    图  3  甲醇在催化剂表面的吸附位置

    Figure  3  Adsorption position of methanol on the catalyst surfaces

    图  4  甲醇分子在CaO(100)和CaO(100)-Sr表面吸附后的俯视图和侧视图

    Figure  4  Adsorption of methanol molecule on the CaO(100) and CaO(100)-Sr surfaces

    (a): side view of CaO(100); (b): side view of CaO(100)-Sr; (c): top view of CaO(100); (d): top view of CaO(100)-Sr

    图  5  CaO(100)-2Sr模型构型以及甲醇在CaO(100)-2Sr表面吸附后的视图

    Figure  5  Structure of the CaO(100)-2Sr surface (a) and the adsorption of methanol molecule on the CaO(100)-2Sr surface of side view (b) and top view (c)

    图  6  不同O原子在CaO(100)和CaO(100)-Sr表面吸附前后局部态密度图

    Figure  6  Partial densities of states of the O atom before and after adsorption on the CaO(100) and CaO(100)-Sr surfaces

    (a): O atom on methanol; (b): O atom on catalyst surface

    图  7  甲醇在催化剂表面吸附后的差分电荷密度

    Figure  7  Deformation density for the methanol adsorption on the CaO(100) (a) and CaO(100)-Sr surfaces (b)

    表  1  CaO(100)、CaO(100)-Sr表面化学键分布统计

    Table  1  Statistical distribution of chemical bonds on the CaO(100) and CaO(100)-Sr surfaces

    Catalyst surface Bond types Bond length /nm Bond numbers Relative bond length Da
    CaO(100) surface Ca-O 0.2405 36 0.835
    CaO(100)-Sr surface Ca-O 0.2425 8 0.829
    0.2337 4
    0.2390 4
    0.2409 8
    0.2383 8
    Sr-O 0.2496 4
    note: a: relative bond length D[22]was calculated by formula (1)
    下载: 导出CSV

    表  2  甲醇在催化剂表面的吸附能(Eads, adsorbateEads, adsorbate*)和解离活化能(Ea, diss)

    Table  2  Adsorption energies and activation energies of methanol on the catalyst surfaces

    Catalyst surface Eads, adsorbate
    /(kJ·mol-1)
    Eads, adsorbate*
    /(kJ·mol-1)
    Ea, diss
    /(kJ·mol-1)
    CaO(100) -127.887 -64.0870 4.186
    CaO(100)-Sr -144.170 -79.0580 -
    下载: 导出CSV

    表  3  甲醇在CaO(100)和CaO(100)-Sr表面吸附的Mulliken电荷布局分析

    Table  3  Mulliken atomic charge populations for methanol adsorption on the CaO(100) and CaO(100)-Sr surfaces

    Atom Charge/e
    free methanol methanol/CaO(100) methanol/CaO(100)-Sr
    H1 0.254 0.383 0.378
    O2 -0.503 -0.807 -0.837
    C3 0.111 -0.002 0.004
    H4 0.039 0.007 0.044
    H5 0.042 0.056 0.047
    H6 0.057 0.061 0.061
    下载: 导出CSV
  • [1] 李振华, 陈晓冰, 淳远, 吴兴才.生物柴油合成反应中KNO3/Al2O3催化剂的活性物种与失活研究[J].燃料化学学报, 2018, 46(9):1079-1086. doi: 10.3969/j.issn.0253-2409.2018.09.007

    LI Zhen-hua, CHEN Xiao-bing, CHUN Yuan, WU Xing-cai. Active species and deactivation behavior of Al2O3 supported KNO3 catalyst in the synthesis of biodiesel via transesterification of soybean oil[J]. J Fuel Chem Technol, 2018, 46(9):1079-1086. doi: 10.3969/j.issn.0253-2409.2018.09.007
    [2] 陈颖, 刘天聪, 高彦华, 梁宇宁.原位共沉淀法制备NiMg(Al)O/γ-Al2O3催化剂及其酯交换性能[J].燃料化学学报, 2018, 46(1):59-66. doi: 10.3969/j.issn.0253-2409.2018.01.008

    CHEN Ying, LIU Tian-cong, GAO Yan-hua, LIANG Yu-ning. In situ co-precipitation of NiMg(Al)O on γ-Al2O3 and its catalytic performance in the transesterification[J]. J Fuel Chem Technol, 2018, 46(1):59-66. doi: 10.3969/j.issn.0253-2409.2018.01.008
    [3] DE LUNA M D G, CUASAY J L, TOLOSA N C, CHUNG T W. Transesterification of soybean oil using a novel heterogeneous base catalyst:Synthesis and characterization of Na-pumice catalyst, optimization oftransesterification conditions, studies on reaction kinetics and catalyst reusability[J]. Fuel, 2017, 209:246-253. doi: 10.1016/j.fuel.2017.07.086
    [4] KETCONG A, MEECHAN W, NAREE T, SENEEVONG I, WINITSORN A, BUTNARK S, NGAMCHARUSSRIVICHAI C. Production of fatty acid methyl esters over a limestone-derived heterogeneous catalyst in a fixed-bed reactor[J]. J Ind Eng Chem, 2014, 20:1665-1671. doi: 10.1016/j.jiec.2013.08.014
    [5] NIU S L, HUO M J, LU CM, LIU M Q, LI H. An investigation on the catalytic capacity of dolomite in transesterification and the calculation of kinetic parameters[J]. Bioresour Technol, 2014, 158:74-80. doi: 10.1016/j.biortech.2014.01.123
    [6] TAN Y H, ABDULLAH M O, NOLASCO-HIPOLITO C, ZAUZI N S A. Application of RSM and taguchi methods for optimizing thetransesterification of waste cooking oil catalyzed by solid ostrich andchicken-eggshell derived CaO[J]. Renewable Energy, 2017, 114:437-447. doi: 10.1016/j.renene.2017.07.024
    [7] KRISHNAMURTHY K N, SRIDHARA S N, KUMAR C S A. Optimization and kinetic study of biodiesel production from hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst[J]. Renewable Energy, 2020, 146:280-296. doi: 10.1016/j.renene.2019.06.161
    [8] 牛胜利, 刘梦琪, 路春美, 李辉, 霍梦佳.电石渣负载氟化钾的催化酯交换特性研究[J].燃料化学学报, 2014, 42(6):690-696. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201406008

    NIU Sheng-li, LIU Meng-qi, LU Chun-mei, LI Hui, HUO Meng-jia. Catalytic performance of carbide slag loaded with potassium fluoride in transesterification[J]. J Fuel Chem Technol, 2014, 42(6):690-696. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201406008
    [9] 牛胜利, 李辉, 路春美, 刘梦琪, 霍梦佳.造纸白泥催化花生油与甲醇酯交换的特性研究[J].燃料化学学报, 2013, 41(7):856-861. doi: 10.3969/j.issn.0253-2409.2013.07.012

    NIU Sheng-li, LI Hui, LU Chun-mei, LIU Meng-qi, HUO Meng-jia. Catalytic performance of papermaking white clay in the transesterification of peanut oil with methanol[J]. J Fuel Chem Technol, 2013, 41(7):856-861. doi: 10.3969/j.issn.0253-2409.2013.07.012
    [10] YE X Z, WANG W, ZHAO X L, WEN T, LI Y J, MA Z H, WEN L B, YE J F, WANG Y. The role of the KCaF3 crystalline phase on the activity of KF/CaO biodiesel synthesis catalyst[J]. Catal Commun, 2018, 116:72-75. doi: 10.1016/j.catcom.2018.08.016
    [11] TANG Y, GU X F, CHEN G. 99% yield biodiesel production from rapeseed oil using benzyl bromide-CaO catalyst[J]. Environ Chem Lett, 2013, 11:203-208. doi: 10.1007/s10311-013-0403-9
    [12] LEE H V, JUAN J C, TAUFIQ-YAP Y H. Preparation and application of binary acid-base CaO-La2O3 catalyst for biodiesel production[J]. Renewable Energy, 2015, 74:124-132. doi: 10.1016/j.renene.2014.07.017
    [13] DELESMA C, CASTILLO R, SEVILLA-CAMACHO P Y, SEBASTIAN P J, MUNIZ J. Density functional study on the transesterification of triacetin assisted by cooperative weak interactions via a gold heterogeneous catalyst:Insights into biodiesel production mechanisms[J]. Fuel, 2017, 202:98-108. doi: 10.1016/j.fuel.2017.04.022
    [14] TAVARES S R, WYPYCH F, LEITAO A A. DFT-based calculation of the adsorptions of acetic acid, triacetin, methanol and the alkoxide formation on the surfaces of zinc acetate[J]. Mol Catal, 2017, 440:43-49. doi: 10.1016/j.mcat.2017.07.004
    [15] DA SILVA A C, KUHNEN C A, DA SILVA S C, DALL'OGLIO E L, DE SOUSA JR P T. DFT study of alkaline-catalyzed methanolysis of pentylic acid triglyceride:Gas phase and solvent effects[J]. Fuel, 2013, 107:387-393. doi: 10.1016/j.fuel.2012.11.028
    [16] LI H, NIU S L, LU C M, LI J. Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production[J]. Fuel, 2016, 176:63-71. doi: 10.1016/j.fuel.2016.02.067
    [17] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Phy Rev B, 1992, 46(11):6671-6687. doi: 10.1103/PhysRevB.46.6671
    [18] 曹勇勇, 蒋军辉, 倪哲明, 夏盛杰, 钱梦丹, 薛继龙. Au19Pt团簇性质及对肉桂醛选择性加氢机理研究[J].高等学校化学学报, 2016, 37(7):1342-1350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201607018

    CAO Yong-yong, JIANG Jun-hui, NI Zhe-ming, XIA Sheng-jie, QIAN Meng-dan, XUE Ji-long. Cluster properties of Au19Pt and selective hydrogenation mechanism of cinnamaldehyde on Au19Pt cluster surface[J]. Chem J Chin Univ, 2016, 37(7):1342-1350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201607018
    [19] TANG X C, NIU S L, ZHAO S, ZHANG X Y, LI X M, YU H W, LU C M, HAN K H. Synthesis of sulfonated catalyst from bituminous coal to catalyze esterification for biodiesel production with promoted mechanism analysis[J]. J Ind Eng Chem, 2019, 77:432-440. doi: 10.1016/j.jiec.2019.05.008
    [20] DAI W, SHUI Z H, LI K. First-principle investigations of CaO(100) surface and adsorption of H2O on CaO(100)[J]. Comput Theor Chem, 2011, 967:185-190. doi: 10.1016/j.comptc.2011.04.016
    [21] 薛继龙, 方镭, 罗伟, 孟跃, 陈涛, 夏盛杰, 倪哲明. Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究[J].燃料化学学报, 2019, 47(6):688-696. doi: 10.3969/j.issn.0253-2409.2019.06.006

    XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. J Fuel Chem Technol, 2019, 47(6):688-696. doi: 10.3969/j.issn.0253-2409.2019.06.006
    [22] 钱梦丹, 罗伟, 倪哲明, 夏盛杰, 薛继龙, 蒋军辉. Ru修饰前后Pd(111)表面的性质及对糠醛吸附的比较研究[J].高等学校化学学报, 2017, 38(9):1611-1618. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GDXH201709017.htm

    QIAN Meng-dan, LUO Wei, Ni Zhe-ming, XIA Shengjie, XUE Ji-long, JIANG Jun-hui. Comparative study on the properties and adsorption of furfural of Pd(111) surface before and after Ru modification[J]. Chem J Chin Univ, 2017, 38(9):1611-1618. http://www.en.cnki.com.cn/Article_en/CJFDTotal-GDXH201709017.htm
    [23] 赵炳坤, 陈镇, 吴玉龙, 杨明德, 封伟.甲氧基在Rh(111)表面吸附的密度泛函研究[J].燃料化学学报, 2010, 38(3):365-369. doi: 10.3969/j.issn.0253-2409.2010.03.019

    ZHAO Bing-kun, CHEN Zhen, WU Yu-long, YANG Ming-de, FENG Wei. A DFT study on the adsorption of methoxy on the Rh(111) surface[J]. J Fuel Chem Technol, 2010, 38(3):365-369. doi: 10.3969/j.issn.0253-2409.2010.03.019
    [24] MAN I C, SORIGA S G, PARVULESCU V. Effect of Ca and Sr in MgO(100) on the activation of methanol and methyl acetate[J]. Catal Today, 2018, 306:207-214. doi: 10.1016/j.cattod.2017.03.062
    [25] LU H T, YU X H, YANG S, YANG H, TU S T. MgO-Li2O catalysts templated by a PDMS-PEO comb-like copolymer for transesterification of vegetable oil to biodiesel[J]. Fuel, 2016, 165:215-223. doi: 10.1016/j.fuel.2015.10.072
    [26] TANG Y, LIU H, REN H M, CHENG Q T, CUI Y, ZHANG J. Development KCl/CaO as a catalyst for biodiesel production by tri-component coupling transesterification[J]. Environ Prog Sustainable Energy, 2019, 38(2):647-653. doi: 10.1002/ep.12977
    [27] GUO F Y, LONG C G, ZHANG J, ZHANG Z, LIU C H, YU K. Adsorption and dissociation of H2O on Al(111) surface by density functional theory calculation[J]. Appl Surf Sci, 2015, 324:584-589. doi: 10.1016/j.apsusc.2014.10.041
    [28] PISTONESI C, JUAN A, FARKAS A P, SOLYMOSI F. DFT study of methanol adsorption and dissociation on β-Mo2C(001)[J]. Surf Sci, 2008, 602(13):2206-2211. doi: 10.1016/j.susc.2008.04.039
    [29] LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013, 1019:141-145. doi: 10.1016/j.comptc.2013.07.009
    [30] 张家仁.固体碱催化甲醇与菜籽油酯交换合成生物柴油[D].武汉: 华中科技大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10487-2008021996.htm

    ZHANG Jia-ren. Synthesis of biodiesel from transesterification of rapeseed oil and methanol over solid base[D]. Wuhan: Huazhong University of Science and Technology, 2006. http://cdmd.cnki.com.cn/article/cdmd-10487-2008021996.htm
    [31] TENG B T, ZHAO Y, WU F M, WEN X D, CHEN Q P, HUANG W X. A density functional theory study of CF3CH2I adsorption and reaction on Ag(111)[J]. Surf Sci, 2012, 606:15-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e2ab2eaa3e70170ff2c226d1e7aef1d
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  158
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2019-12-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回