留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔Ni/MgO催化剂催化水蒸气重整生物质油制氢

刘守光 刘悦 刘一默 王玉和

刘守光, 刘悦, 刘一默, 王玉和. 介孔Ni/MgO催化剂催化水蒸气重整生物质油制氢[J]. 燃料化学学报(中英文), 2020, 48(4): 424-431.
引用本文: 刘守光, 刘悦, 刘一默, 王玉和. 介孔Ni/MgO催化剂催化水蒸气重整生物质油制氢[J]. 燃料化学学报(中英文), 2020, 48(4): 424-431.
LIU Shou-guang, LIU Yue, LIU Yi-mo, WANG Yu-he. Hydrogen production by steam reforming of bio-oils over mesoporous Ni/MgO catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 424-431.
Citation: LIU Shou-guang, LIU Yue, LIU Yi-mo, WANG Yu-he. Hydrogen production by steam reforming of bio-oils over mesoporous Ni/MgO catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 424-431.

介孔Ni/MgO催化剂催化水蒸气重整生物质油制氢

基金项目: 

黑龙江省教育厅海外学人科研项目 1155h019

详细信息
  • 中图分类号: O643

Hydrogen production by steam reforming of bio-oils over mesoporous Ni/MgO catalyst

Funds: 

Overseas Scholars Program of Department of Education, Heilongjiang Province 1155h019

More Information
  • 摘要: 采用水热法制备了介孔MgO作为催化剂的载体,并制备了介孔Ni/MgO催化剂。利用N2吸附-脱附、XRD、H2-TPR等对样品进行表征,并考察了介孔Ni/MgO催化水蒸气重整糠醛、生物质油模型物和两种商用生物质油制氢的活性。结果表明,在介孔Ni/MgO催化剂催化水蒸气重整糠醛制氢反应中,随着反应温度的提高,水蒸气重整糠醛中糠醛的转化率、氢气的产率和氢气的选择性,都呈现递增的趋势。在反应温度提高到600 ℃时,糠醛的转化率和氢气的产率分别达到94.9%和83.2%。Ni/MgO催化水蒸气重整二组分模拟生物质油,糠醛/乙酸、糠醛/羟基丙酮制氢的反应中,氢气的产率分别达到87.3%和86.8%,均高于水蒸气重整糠醛反应中氢气的产率。由此表明,乙酸或羟基丙酮的存在,提高了模拟生物质油中主要有机物组分糠醛的转化率,并相应地提高了氢气的产率。在水蒸气重整商用生物质油制氢反应中,随着反应物水碳比(S/C(molar ratio)=5、10、15、20、25)的提高,主要有机物的转化率、氢气的产率和选择性呈现出增加的趋势。在水碳比为20时,两种生物质油的主要有机物组分(糠醛、乙酸和羟基丙酮)的转化率均可达90%以上,氢气的产率也达到81.0%以上。由此可知,Ni催化剂对于水蒸气重整商用生物质油也具有较高的催化活性。
  • 图  1  MgO和NiO/MgO的N2吸附-脱附等温线以及BJH孔径分布(内嵌)

    Figure  1  N2 adsorption-desorption isotherms of MgO and NiO/MgO and pore size distribution by BJH method (insert)

    图  2  MgO (a)、NiO/MgO (b)和Ni/MgO (c)的广角XRD谱图和小角XRD谱图(内嵌)

    Figure  2  XRD patterns at wide angle and small angle (inset) for MgO (a), NiO/MgO (b) and Ni/MgO (c)

    图  3  NiO/MgO前驱体的H2-TPR谱图

    Figure  3  H2-TPR spectrum of NiO/MgO precursor

    图  4  Ni/MgO催化水蒸气重整模拟生物质油制氢

    Figure  4  Hydrogen production by steam reforming of simulated biomass oil over Ni/MgO catalyst

    图  5  Ni/MgO催化水蒸气重整生物质油A制氢

    Figure  5  Hydrogen production by steam reforming of bio-oil A over Ni/MgO catalyst

    图  6  Ni/MgO催化剂上水蒸气重整生物质油B制氢

    Figure  6  Hydrogen production by steam reforming of bio-oil B over Ni/MgO catalyst

    表  1  生物质油的组成

    Table  1  Composition of various bio-oils

    Bio-oil A* Bio-oil B*
    organic component content w/% organic component content w/%
    Acetic acid 13.0 acetic acid 9.0
    Furfural 10.0 furfural 8.5
    Hydroxyacetone 14.0 hydroxyacetone 7.0
    1, 2-cyclopentanedione 8.0 acetone 7.5
    L-glucose 7.5 formic acid 6.0
    2-furanmethanol 8.0 methyl formate 6.0
    Phenol 8.5 acetaldehyde 5.5
    5-hydroxymethylfurfural 7.0 phenol 6.0
    3-methylphenol 6.0 toluene 7.5
    4-methylphenol 5.0 furan 6.5
    2-methoxyphenol 6.5 formaldehyde 8.0
    Others 6.0-7.0 xylene 7.0
    L-glucose 8.5
    others 6.0-7.0
    *: the mass ratio of water and total organics in the two kinds of biomass oil is the same, with water and organics accounting for 50% respectively
    下载: 导出CSV

    表  2  介孔MgO和NiO/MgO的物理性质

    Table  2  Physical properties of mesoporous MgO and NiO/MgO

    Sample Ni loading /% BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm
    MgO - 58.60 0.26 14.62
    NiO/MgO 15.96 55.74 0.29 15.29
    下载: 导出CSV

    表  3  不同温度下Ni/MgO催化水蒸气重整糠醛制氢

    Table  3  Hydrogen production by steam reforming of furfural over Ni/MgO catalyst at different reaction temperatures

    Reaction temp. t/℃ Furfural conv. x/% H2 yield φ/% Selectivity s/%
    H2 CO CO2 CH4
    400 49.6 42.5 53.4 7.7 30 8.9
    450 62.7 53.0 64.6 8.7 5.3 21.4
    500 79.2 65.4 68.5 11.5 7.2 12.8
    550 86.2 75.2 71.2 14.3 7.7 6.8
    600 94.9 83.2 68.6 19.1 11.0 1.3
    reaction conditions: 0.3 g catalyst, N2 flow rate=45 mL/min, liquid flow rate=5.5 mL/h, S/C(molar ratio)=20, TOS=6 h
    下载: 导出CSV

    表  4  Ni/MgO催化水蒸气重整模拟生物质油制氢

    Table  4  Hydrogen production by steam reforming of simulated biomass oil over Ni/MgO catalyst

    Simulated biomass oil H2 yield φ/% Selectivity s/%
    H2 CO CO2 CH4
    Furfural/acetic acid 87.3 73.4 15.3 8.5 2.8
    Furfural/hydroxyacetone 86.8 72.6 15.6 8.8 3.0
    Furfural/acetic acid/hydroxyacetone 72.0 71.9 15.2 10.0 2.9
    reaction conditions: 0.3 g catalyst, N2 flow rate=45 mL/min, liquid flow rate=5.5 mL/h, total S/C(molar ratio)=20, reaction temperature=600 ℃, TOS=6 h
    下载: 导出CSV

    表  5  Ni/MgO催化水蒸气重整生物质油A制氢

    Table  5  Hydrogen production by steam reforming of bio-oil A over Ni/MgO catalyst

    S/C (molar ratio) H2 yield φ/% Selectivity s/%
    H2 CO CO2 CH4
    5 26.2 50.7 16.2 21.0 12.1
    10 44.3 59.2 13.5 18.00 9.3
    15 60.2 65.1 10.9 16.4 7.6
    20 81.6 72.6 8.8 13.5 5.1
    25 81.0 70.8 9.3 12.8 7.1
    reaction conditions: 0.3 g catalyst, N2 flow rate=45 mL/min, liquid flow rate=5.5 mL/h, total S/C(molar ratio)=5, 10, 15, 20, 25, reaction temperature=600 ℃, TOS=6 h
    下载: 导出CSV

    表  6  Ni/MgO催化剂上水蒸气重整生物质油B制氢

    Table  6  Hydrogen production by steam reforming of bio-oil B over Ni/MgO catalyst

    S/C (molar ratio) H2 yield φ/% Selectivity s/%
    H2 CO CO2 CH4
    5 30.8 48.2 16.6 21.7 13.5
    10 48.9 58.6 14.2 17.1 10.1
    15 63.7 61.0 12.7 17.4 8.9
    20 81.2 72.8 9.1 12.2 5.9
    25 78.0 66.7 10.5 13.6 9.2
    reaction conditions: 0.3 g catalyst, N2 flow rate=45 mL/min, liquid flow rate=5.5 mL/h, total S/C(molar ratio)=5, 10, 15, 20, 25, reaction temperature=600 ℃, TOS=6 h
    下载: 导出CSV
  • [1] DAS D, VEZIROGLU T N. Hydrogen production by biological processes:A survey of literature[J]. Int J Hydrogen Energy, 2001, 26(1):13-28. http://cn.bing.com/academic/profile?id=964d7503026334b621a403f060ca92f1&encoded=0&v=paper_preview&mkt=zh-cn
    [2] SIRIRUANG C, CHAROJROCHKUL S, TOOCHINDA P. Hydrogen production from methanol-steam reforming at low temperature over Cu-Zn/ZrO2-doped Al2O3[J]. Monatsh Chem, 2016, 147(7):1143-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ff6e87afebdb24a43d39691c7008376
    [3] BLEISCHWITZ R, BADER N. Policies for the transition towards a hydrogen economy:the EU case[J]. Energy Policy, 2010, 38(10):5388-5398. http://cn.bing.com/academic/profile?id=da6d915ae09c1dbfec4d0036715d3cab&encoded=0&v=paper_preview&mkt=zh-cn
    [4] FIERRO J L G, PENA M A, GOMEZ J P. New catalytic routes for syngas and hydrogen production[J]. Appl Catal A:Gen, 1996, 144(1/2):7-57. http://cn.bing.com/academic/profile?id=b41f402aae6bdb866b0b9b1118c675ca&encoded=0&v=paper_preview&mkt=zh-cn
    [5] KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renewable Sustainable Energy Rev, 2008, 12(2):553-563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=907a099db88ef1d843646597b33ae677
    [6] 唐灿.生物油蒸汽催化重整制氢研究现状[J].应用能源技术, 2019, (6):1-3. http://d.old.wanfangdata.com.cn/Periodical/yynyjs201906002

    TANG Can. Research status of bio-oil steam catalytic reforming for hydrogen production[J]. Appl Energy Technol, 2019, (6):1-3. http://d.old.wanfangdata.com.cn/Periodical/yynyjs201906002
    [7] NAKAMURA K, MIYAZAWA T, SAKURAI T, MIYAO T, NAITO S, BEGUM N, KUNIMORI K, TOMISHIGE K. Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass[J]. Appl Catal B:Environ, 2009, 86(1/2):36-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bacb393cb04307fb229c3c2a30d04bd
    [8] SATO K, FUJIMOTO K. Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification[J]. Catal Commun, 2007, 8(11):1697-1701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=134030fe6c75bbfbb081616e7f0d7a09
    [9] 谢登印, 张素平, 陈志远, 陈振奇, 许庆利. Ni/Al2O3改性催化剂催化重整生物油模拟物制氢研究[J].燃料化学学报, 2015, 43(3):302-308. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18588.shtml

    XIE Deng-yin, ZHANG Su-ping, CHEN Zhi-yuan, CHEN Zhen-qi, XU Qing-li. Co and Cu modified Ni/Al2O3 steam reforming catalysts for hydrogen production from model bio-oil[J]. J Fuel Chem Technol, 2015, 43(3):302-308. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18588.shtml
    [10] 王一双, 陈明强, 刘少敏, 杨忠连, 沈朝萍, 刘珂.负载NiO-Fe2O3的凹凸棒石对生物油模型物催化重整制氢性能的影响[J].燃料化学学报, 2015, 43(12):1470-1475. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18746.shtml

    WANG Yi-shuang, CHEN Ming-qiang, LIU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol, 2015, 43(12):1470-1475. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18746.shtml
    [11] YANG X, WANG Y, LI M, SUN B, LI Y, WANG Y. Enhanced hydrogen production by steam reforming of acetic acid over a Ni catalyst supported on mesoporous MgO[J]. Energy Fuels, 2016, 30(3):2198-2203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db749e8e8852704eb1b6d15254aee3e7
    [12] WANG Y, YANG X, WANG Y. Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production[J]. Int J Hydrogen Energy, 2016, 41(40):17846-17857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a73ff9cb624269b0581f1788a0972102
    [13] YANG X, WANG Y, WANG Y. Significantly improved catalytic performance of Ni-based MgO catalyst in steam reforming of phenol by inducing mesostructure[J]. Catalysts, 2015, 5(4):1721-1736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=catalysts-05-01721
    [14] WANG Y, JI T, YANG X, WANG Y. Comparative study on steam reforming of single- and multicomponent model compounds of biomass fermentation for producing biohydrogen over mesoporous Ni/MgO catalyst[J]. Energy Fuels, 2016, 30(10):8432-8440. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23ad0fc1da7f3bb58ef1a65d92e51311
    [15] 纪婷婷, 杨晓萱, 王亚晶, 王玉和.不同方法制备的介孔Ni/MgO催化剂上水蒸气重整苯酚制氢[J].燃料化学学报, 2016, 44(9):1131-1137. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18903.shtml

    JI Ting-ting, YANG Xiao-xuan, WANG Ya-jing, WANG Yu-he. Steam reforming of phenol for producing hydrogen by metal Ni support on MgO prepared by different methods[J]. J Fuel Chem Technol, 2016, 44(9):1131-1137. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18903.shtml
    [16] LING Z, ZHENG M, DU Q, WANG Y, SONG J, DAI W, ZHANG L, JI G, CAO J. Synthesis of mesoporous MgO nanoplate by an easy solvothermal-annealing method[J]. Solid State Sci, 2011, 13(12):2073-2079. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d584a373c5398fdaa5b0db721d690c1
    [17] ROSEN J, HUTCHINGS G, JIAO F. Synthesis, structure, and photocatalytic properties of ordered mesoporous metal-doped Co3O4[J]. J Catal, 2014, 310(1):2-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=debe41e14f3de14eddf532866dc1a9d2
    [18] LI Y, LU G, MA J. Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structure for CO2 methanation[J]. RSC Adv, 2014, 4(34):17420. https://www.researchgate.net/publication/278189856_Highly_active_and_stable_nano_NiO-MgO_catalyst_encapsulated_by_silica_with_a_core-shell_structure_for_CO2_methanation
    [19] YU M, ZHU K, LIU Z, XIAO H, DENG W, ZHOU X. Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis[J]. Appl Catal B:Environ, 2014, 148/149:177-190.
    [20] TZIMAS E, PETEVES D S. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term[J]. Energy, 2005, 30(14):2672-2689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84a6e682357f62498e563e26b490b100
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  43
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-02-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回