留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单相Co2C的制备及其费-托合成催化性能研究

李啸 刘兴武 姜东 温晓东

李啸, 刘兴武, 姜东, 温晓东. 单相Co2C的制备及其费-托合成催化性能研究[J]. 燃料化学学报(中英文), 2018, 46(4): 459-464.
引用本文: 李啸, 刘兴武, 姜东, 温晓东. 单相Co2C的制备及其费-托合成催化性能研究[J]. 燃料化学学报(中英文), 2018, 46(4): 459-464.
LI Xiao, LIU Xing-wu, JIANG Dong, WEN Xiao-dong. Synthesis and catalytic performance of single phase Co2C catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 459-464.
Citation: LI Xiao, LIU Xing-wu, JIANG Dong, WEN Xiao-dong. Synthesis and catalytic performance of single phase Co2C catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 459-464.

单相Co2C的制备及其费-托合成催化性能研究

基金项目: 

国家自然科学基金 21473229

国家自然科学基金 91545121

详细信息
  • 中图分类号: O643

Synthesis and catalytic performance of single phase Co2C catalyst for Fischer-Tropsch synthesis

Funds: 

the National Natural Science Foundation of China 21473229

the National Natural Science Foundation of China 91545121

More Information
  • 摘要: 采用CO与金属钴在温度280℃,压力2 MPa的条件下反应48 h后制备得到单相Co2C催化剂。通过XRD、H2-TPR、TEM和XAS对催化剂的结构和组成进行表征并考察了单相Co2C催化剂在费-托合成反应中的稳定性与催化性能。结果表明,随着费-托合成反应的进行,Co2C催化剂的活性缓慢上升,同时伴随着产物中甲烷的选择性逐渐降低,C5+的选择性逐渐升高。对比反应前后催化剂发现,反应后的催化剂为Co2C和少量金属Co的混合相,表明在费-托合成反应条件下,单相Co2C会发生部分分解,生成的金属Co会导致CO的转化率和产物的选择性发生变化。
  • 图  1  不同碳化时间制备的催化剂的XRD谱图

    Figure  1  XRD spectra of the catalysts prepared with different carburization times (250 ℃)

    图  2  不同碳化温度制备的催化剂的XRD谱图

    Figure  2  XRD spectra of the samples obtained at different carburizing temperatures (48 h)

    图  3  Co2C的H2-TPR谱图

    Figure  3  H2-TPR profile of Co2C

    a: TCD signal; b: mass spectrum signal

    图  4  Co2C的TEM照片

    Figure  4  TEM images of the Co2C sample

    (a): TEM; (b): HRTEM

    图  5  CO的转化率,C2-4产物烯烷比和产物的选择性随反应时间的变化

    Figure  5  (a) the CO conversion and ratio of olefin/paraffin (C2-4) and (b) product selectivity as the function of time on-stream

    图  6  反应前后催化剂的XRD谱图

    Figure  6  XRD spectra of the fresh and used catalysts

    图  7  反应前后催化剂的XAS谱图

    Figure  7  XAS spectra of the fresh and used catalysts

    (a): Co K-edge XANES spectra; (b): Co K-edge EXAFS spectra

    表  1  金属Co和Co2C催化剂的费-托合成催化性能

    Table  1  Catalytic performance of the metallic Co and Co2C catalysts for FT synthesis

    Catalyst CO
    conv. x/%
    Product distribution s/%
    CH4 CO2 C2-4a C5+b
    Coc 33.1 10.4 0.4 8.9 80.3
    Co2C 10.5 43.1 16.0 25.8 15.1
    reaction conditions: H2/CO=2; p=2 MPa; t=220 ℃; GSHV
    = 2000 mL/(gcat·h)
    a: hydrocarbons with carbon numbers from 2 to 4;
    b: hydrocarbons with carbon numbers more than 4;
    c: metallic Co was as the reference
    下载: 导出CSV
  • [1] 温晓东, 杨勇, 相宏伟, 焦海军, 李永旺.费托合成铁基催化剂的设计基础:从理论走向实践[J].中国科学:化学, 2017, 47(11):1298-1311. http://www.cnki.com.cn/Article/CJFDTotal-JBXK201711007.htm

    WEN Xiao-dong, YANG yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. The design principle of iron-based catalysts for fischer-tropsch synthesis:From theory to practice[J]. Sci Sin Chim, 2017, 47(11):1298-1311. http://www.cnki.com.cn/Article/CJFDTotal-JBXK201711007.htm
    [2] DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002, 71:227-241. doi: 10.1016/S0920-5861(01)00453-9
    [3] 李娟, 吴梁鹏, 邱勇, 定明月, 王铁军, 李新军, 马隆龙.费托合成催化剂的研究进[J].化工进展, 2013, 32:100-109. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGJZ2013S1021.htm

    LI Juan, WU Liang-peng, QIU Yong, DING Ming-yue, WANG Tie-jun, LI Xing-jun, MA Long-long. Research advances in catalysts for Fischer-Tropsch synthesis[J]. Chem Ind Eng Prog, 2013, 32:100-108. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGJZ2013S1021.htm
    [4] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A:Gen, 1997, 161:59-78. doi: 10.1016/S0926-860X(97)00186-5
    [5] 孙予罕, 陈建刚, 王俊刚, 贾丽涛, 侯博, 李德宝, 张娟.费托合成钴基催化剂的研究进展[J].催化学报, 2010, 31(8):919-927. http://d.wanfangdata.com.cn/Periodical_cuihuaxb201008007.aspx

    SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of Co-based catalysts for Fisher-Tropsch synthesis[J]. Chin J Catal, 2010, 31(8):919-927. http://d.wanfangdata.com.cn/Periodical_cuihuaxb201008007.aspx
    [6] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007, 107:1692-1744. doi: 10.1021/cr050972v
    [7] JACOBS G, PATTERSON P M, ZHANG Y P, DAS T, LI J C, DAVIS H B.Fischer-Tropsch synthesis:Deactivation of noble metal-promoted Co/Al2O3 catalysts[J]. Appl Catal A:Gen, 2002, 233:215-226. doi: 10.1016/S0926-860X(02)00147-3
    [8] KARACA H, HONG J P, FONGERLAND P, ROUSSEL P GRIBORAL-CONSTAN A, LAROIX M, HORTMANN K, SAFONOVA O V, KHODAKOV A Y. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. Chem Comm, 2010, 46:788-790. doi: 10.1039/B920110F
    [9] KWAK G, KIM D E, PARK H G, KANG S C, HA K S, JUN K W, LEE Y J. Enhanced catalytic activity of cobalt catalysts for Fischer-Tropsch synthesis via carburization and hydrogenation and its application to regeneration[J]. Catal Sci Technol, 2016, 6(12):4594-4600. doi: 10.1039/C5CY01399B
    [10] PEI Y P, DING Y J, ZHU H J, ZANG J, SONG X G, DONG W D, WANG T, YAN L, LU Y. Study on the effect of alkali promoters on the formation of cobalt carbide (Co2C) and on the performance of Co2C via CO hydrogenation reaction[J]. React Kinet Mech Cat, 2013, 111(2):505-520.
    [11] CLAEYS M, DRY M E, STEEN E W, PLESSIS E D, VAN BERGEE P J, SAIB A M, MOODLEY D J. In situ magnetometer study on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis[J]. J Catal, 2014, 318:193-202. doi: 10.1016/j.jcat.2014.08.002
    [12] WELLER S, HOFER L J E, ANDERSON R B. The role of bulk cobalt carbide in the Fischer-Tropsch synthesis[J]. J Am Chem Soc, 1948, 70:799-801. doi: 10.1021/ja01182a108
    [13] MOHANDS J C, GNANAMANI M K, JACOBS G, MA W P, JI Y Y, KHALID S, DAVIS B H. Fischer-Tropsch synthesis:Characterization and reaction testing of cobalt carbide[J]. ACS Catal, 2011, 1(11):1581-1588. doi: 10.1021/cs200236q
    [14] BAHR H A, JESSEN V. Die kohlenoxyd-spaltung am kobalt[J]. Ber Dtsch Chem Ges, 1930, 63:2226-2237. doi: 10.1002/cber.v63:8
    [15] ⅡJIMA Y, MAKUTA F, AGARWALA R P, HIRANO K. Diffusion of carbon in cobalt[J]. Mat Trans JIM, 1989, 30(12):984-990. doi: 10.2320/matertrans1989.30.984
    [16] BROWNING L C, EMMETT P H. Equilibrium measurements in the Ni3C-Ni-CH4-H2 and Co2C-Co-CH4-H2 systems[J]. J Am Chem Soc, 1952, 74(7):1680-1682. doi: 10.1021/ja01127a021
    [17] CHENG J, HU P, ELLICS P, FRENCH S, KELLY G, LOCK C M. Density functional theory study of iron and cobalt carbides for Fischer-Tropsch synthesis[J]. J Phys Chem C, 2010, 114:1085-1093. doi: 10.1021/jp908482q
    [18] KARACA H, SAFONOVA O V, CHAMBREY S, FONGARLAND P, ROUSSEL P, KHODAHOV A Y. Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. J Catal, 2011, 277(1):14-26. doi: 10.1016/j.jcat.2010.10.007
    [19] ZhAO Z, LU W, ZHU H J, DONG W D, SUN F Y, JIANG Z, LIU TAO, DING Y J. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catal, 2017, 8(1):228-241 https://www.narcis.nl/publication/RecordID/oai%3Adspace.library.uu.nl%3A1874%2F290805
    [20] LI S W, YANG C, YIN Z, YANG H G, CHEN Y F, LIN L L, LI M Z, LI W Z, HU G, MA D. Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction[J]. Nano Res, 2017, 10(4):1322-1328. doi: 10.1007/s12274-017-1425-6
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  34
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-02-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回