留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅源对蒸氨法制备Cu/SiO2催化剂催化甲醇裂解制氢的影响

杜泽宇 朱明 包喆宇 史大佑 陈晓蓉 许岩 梅华

杜泽宇, 朱明, 包喆宇, 史大佑, 陈晓蓉, 许岩, 梅华. 硅源对蒸氨法制备Cu/SiO2催化剂催化甲醇裂解制氢的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 692-699.
引用本文: 杜泽宇, 朱明, 包喆宇, 史大佑, 陈晓蓉, 许岩, 梅华. 硅源对蒸氨法制备Cu/SiO2催化剂催化甲醇裂解制氢的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 692-699.
DU Ze-yu, ZHU Ming, BAO Zhe-yu, SHI Da-you, CHEN Xiao-rong, XU Yan, MEI Hua. Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 692-699.
Citation: DU Ze-yu, ZHU Ming, BAO Zhe-yu, SHI Da-you, CHEN Xiao-rong, XU Yan, MEI Hua. Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 692-699.

硅源对蒸氨法制备Cu/SiO2催化剂催化甲醇裂解制氢的影响

详细信息
  • 中图分类号: O643.88

Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method

More Information
  • 摘要: 采用蒸氨法制备Cu/SiO2催化剂,分别考察气相二氧化硅(SiO2-aer)、硅胶(SiO2-gel)和碱性硅溶胶(SiO2-sol)对Cu/SiO2催化剂催化甲醇裂解制氢性能的影响,并采用N2吸附-脱附、N2O化学吸附、电感耦合等离子体原子发射光谱法(ICP-AES)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等方法对催化剂进行表征。结果表明,硅源对Cu/SiO2催化剂的活性具有较大影响。以碱性硅溶胶作为硅源制得的Cu/SiO2-sol催化剂比表面积较大,活性中心粒径较小且分散均匀,这些使得其制氢性能优于其他两种硅源为载体所制备的催化剂。在反应温度280 ℃,反应压力1 MPa,甲醇质量空速0.6 h-1的条件下,相较于Cu/SiO2-aer和Cu/SiO2-gel催化剂,Cu/SiO2-sol催化剂的甲醇转化率分别提高10%和7%,气相副产物CH4和CO2浓度也有所降低,该催化剂上的甲醇转化率和气体收率分别达到98.4%和96.7%。
  • 图  1  不同硅源制备Cu/SiO2催化剂的XRD谱图

    Figure  1  XRD patterns of the Cu/SiO2 catalysts prepared with different silica sources

    a: Cu/SiO2-aer; b: Cu/SiO2-gel; c: Cu/SiO2-sol

    图  2  还原态Cu/SiO2催化剂的XRD谱图

    Figure  2  XRD patterns of the reduced Cu/SiO2 catalysts prepared with different silica sources

    a: Cu/SiO2-aer; b: Cu/SiO2-gel; c: Cu/SiO2-sol

    图  3  Cu/SiO2催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the Cu/SiO2 catalysts prepared with different silica sources

    a: Cu/SiO2-aer; b: Cu/SiO2-gel; c: Cu/SiO2-sol

    图  4  Cu/SiO2催化剂的透射电镜照片

    Figure  4  EM images of the Cu/SiO2 catalysts prepared with different silica sources

    (a): Cu/SiO2-aer; (b): Cu/SiO2-gel; (c): Cu/SiO2-sol

    图  5  还原态Cu/SiO2催化剂的透射电镜照片

    Figure  5  TEM images of the reduced Cu/SiO2 catalysts prepared with different silica sources

    (a): Cu/SiO2-aer; (b): Cu/SiO2-gel; (c): Cu/SiO2-sol

    图  6  Cu/SiO2催化剂的XPS谱图

    Figure  6  XPS spectra of the Cu/SiO2 catalysts after calcinations

    a: Cu/SiO2-aer; b: Cu/SiO2-gel; c: Cu/SiO2-sol

    图  7  反应温度对催化性能的影响

    Figure  7  Effect of reaction temperature on methanol decomposition over Cu/SiO2-sol catalyst

    图  8  反应温度对气相副产物浓度的影响

    Figure  8  Effect of reaction temperature on the byproducts concentration of methanol decomposition over Cu/SiO2-sol catalyst

    图  9  质量空速对催化性能的影响

    Figure  9  Effect of methanol weight hourly space velocity on methanol decomposition over Cu/SiO2-sol catalyst

    图  10  质量空速对气相副产物浓度的影响

    Figure  10  Effect of methanol weight hourly space velocity on the byproducts concentration of methanol decomposition over Cu/SiO2-sol catalyst

    图  11  Cu/SiO2-sol上甲醇裂解制氢的稳定性

    Figure  11  Stability test of methanol decomposition over Cu/SiO2-sol catalysts

    图  12  Cu/SiO2-sol催化剂反应前后的透射电镜照片

    Figure  12  TEM images of the reduced and used Cu/SiO2-sol catalyst

    (a): Cu/SiO2-sol catalyst after reduction; (b): Cu/SiO2-sol catalyst after reaction 100h

    表  1  不同硅源制备的Cu/SiO2催化剂的比表面积和孔结构性质

    Table  1  Textural properties of the Cu/SiO2 catalysts prepared with different silica sources

    Catalyst BET a
    A/(m2·g-1)
    Pore volumea
    v /(cm3·g-1)
    Average porea
    diameter d /nm
    Cu dispersionb
    /%
    Content w/%c
    Cu Na
    SiO2-aer 359.2 0.83 11.11 - - -
    SiO2-gel 324.9 0.96 10.27 - - -
    SiO2-sol 192.8 0.2 4.12 - - -
    Cu/SiO2-aer 512.8 0.47 3.35 20.1 33.2 B.D.
    Cu/SiO2-gel 555.3 0.42 2.71 22.3 33.7 B.D.
    Cu/SiO2-sol 580.6 0.69 4.09 24.8 34.5 B.D.
    a:determined by N2 adsorption-desorption;b:detected by N2O chemisorption;c:determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES),B.D.=below detection
    下载: 导出CSV

    表  2  不同硅源对Cu/SiO2催化剂催化甲醇裂解制氢的影响

    Table  2  Catalytic performance of the Cu/SiO2 catalysts with different silica sources in methanol decomposition

    Catalyst Methanol conversion x/% Gas yield w/% Concentration φ/%
    CH4 CO2
    Cu/SiO2-aer 88.7 86.1 1.04 2.12
    Cu/SiO2-gel 91.7 89.5 0.8 1.93
    Cu/SiO2-sol 98.4 96.7 0.71 1.75
    下载: 导出CSV
  • [1] TONELLI F, GORRIZ O, TARDITI A, CORNAGLIA L, ARRUA L, ABELLO M C. Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(39):13379-13387. doi: 10.1016/j.ijhydene.2015.08.046
    [2] AMIRI T Y, MOGHADDAS J. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(3):1472-1480. doi: 10.1016/j.ijhydene.2014.11.104
    [3] SIRIRUANG C, CHAROJROCHKUL S, TOOCHINDA P. Hydrogen production from methanol-steam reforming at low temperature over Cu-Zn/ZrO2-doped Al2O3[J]. Monatsh Chem, 2016, 147(7):1143-1151. doi: 10.1007/s00706-016-1662-5
    [4] VERENDEL J J, DINER P. Efficient, low temperature production of hydrogen from methanol[J]. ChemCatChem, 2013, 5(10):2795-2797. doi: 10.1002/cctc.v5.10
    [5] LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEV A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094
    [6] YANG R X, CHUANG K H, WEY M Y. Hydrogen production through methanol steam reforming:Effect of synthesis parameters on Ni-Cu/CaO-SiO2 catalysts activity[J]. Int J Hydrogen Energy, 2014, 39(34):19494-19501. doi: 10.1016/j.ijhydene.2014.09.140
    [7] MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000, 152(1/2):157-165.
    [8] 张雄伟, 储伟, 王晓东, 杨维慎, 盛世善, 张涛.氧化铝担载的贵金属铱基催化剂的制备及其对甲醇裂解反应的催化性能[J].催化学报, 2006, 27(10):863-867. doi: 10.3321/j.issn:0253-9837.2006.10.007

    ZHANG Xiong-wei, CHU Wei, WANG Xiao-dong, YANG Wei-shen, SHENG Shi-shan, ZHANG Tao. Preparation of alumina-supported nobel metal iridium catalysts and their catalytic performance for methanol decomposition[J]. Chin J Catal, 2006, 27(10):863-867. doi: 10.3321/j.issn:0253-9837.2006.10.007
    [9] YONG S T, OOI C W, CHAI S P, YU F, WU X S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. Int J Hydrogen Energy, 2013, 38(22):9541-9552. doi: 10.1016/j.ijhydene.2013.03.023
    [10] YAAKOB Z, KAMARUDIN S K, DAUD W R W, YOSFIAH M R, LIM K L, KAZEMIAN H. Hydrogen production by methanol-steam reforming using Ni-Mo-Cu/gamma-alumina trimetallic catalysts[J]. Asia-Pac J Chem Eng, 2010, 5(6):862-868. doi: 10.1002/apj.v5.6
    [11] 李雪, 王晓文, 赵明, 刘建英, 龚茂初, 陈耀强.钙改性的Pd/CeO2-ZrO2-Al2O3催化剂催化甲醇裂解反应[J].催化学报, 2011, 32(11):1739-1746.

    LI Xue, WANG Xiao-wen, ZHAO Ming, LIU Jian-ying, GONG Mao-chu, CHEN Yao-qiang. Ca-modified Pd/CeO2-ZrO2-Al2O3 catalysts for methanol decomposition[J]. Chin J Catal, 2011, 32(11):1739-1746.
    [12] 倪哲明, 毛江洪, 潘国祥, 胥倩, 李小年. Pd催化甲醇裂解制氢的反应机理[J].物理化学学报, 2009, 25(5):876-882.

    NI Zhe-ming, MAO Jiang-hong, PAN Guo-xiang, XU Qian, LI Xiao-nian. Mechanism of palladium-catalyzed methanol decomposition for hydrogen production[J]. Acta Phys-Chim Sin, 2009, 25(5):876-882.
    [13] WANG G C, ZHOU Y H, MORIKAWA Y, NAKAMURA J, CAI Z S, ZHAO X Z. Kinetic mechanism of methanol decomposition on Ni(111) surface:A theoretical study[J]. Phys Chem B, 2005, 109(25):12431-12442. doi: 10.1021/jp0463969
    [14] GREELEY J, MAVRIKAKIS M. Methanol decomposition on Cu(111):A DFT study[J]. J Catal, 2002, 208(2):291-300. doi: 10.1006/jcat.2002.3586
    [15] 陈红梅, 朱玉雷, 丁国强, 郑洪岩, 李永旺.草酸二甲酯气相催化加氢合成乙二醇的研究[J].燃料化学学报, 2011, 39(7):519-526. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17770.shtml

    CHEN Hong-mei, ZHU Yu-lei, DING Guo-qiang, ZHENG Hong-yan, LI Yong-wang. Study on hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Fuel Chem Technol, 2011, 39(7):519-526. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17770.shtml
    [16] HUANG Z W, LIU H L, CUI F, ZUO J L, CHEN J, XIA C G. Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method[J]. Catal Today, 2014, 234(4):223-232.
    [17] JI D H, LIU G, JIA M J, ZHANG W X, WANG G J, WU T H, WANG Z L. Studies on dehydrogenation of 2-butanol over supported copper catalysts prepared by sol-gel and impregnation methods[J]. Chem J Chin Univ, 2007, 28(8):1543-1546. http://www.cjcu.jlu.edu.cn/EN/Y2007/V28/I8/1543
    [18] CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2008, 257(1):172-180. doi: 10.1016/j.jcat.2008.04.021
    [19] WANG Z Q, XU Z N, PENG S Y, ZHANG M J, LU G, CHEN Q S, CHEN Y M, GUO G C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catal, 2015, 5(7):4255-4259. doi: 10.1021/acscatal.5b00682
    [20] GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc, 2012, 134(34):13922-13925. doi: 10.1021/ja3034153
    [21] ZHAO S, YUE H R, ZHAO Y J, WANG B, GENG Y C, LV J, WANG S P, GONG J L, MA X B. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2:Enhanced stability with boron dopant[J]. J Catal, 2013, 297(1):142-150.
    [22] ZHANG C C, WANG D H, ZHU M Y, YU F, DAI B. Effect of different nano-sized silica sols as supports on the structure and properties of Cu/SiO2 for hydrogenation of dimethyl oxalate[J]. Catalysts, 2017, 7(3):75.
    [23] DONG X H, MA X G, XU H Y, GE Q J. Comparative study of silica-supported copper catalysts prepared by different methods:Formation and transition of copper phyllosilicate[J]. Catal Sci Technol, 2016, 6(12):4151-4158. doi: 10.1039/C5CY01965F
    [24] HUANG Z W, CUI F, XUE J J, ZUO J L, CHEN J, XIA C G. Cu/SiO2 catalysts prepared by hom-and heterogeneous deposition-precipitation methods:Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catal Today, 2012, 183(1):42-51. doi: 10.1016/j.cattod.2011.08.038
    [25] 王新雷, 马奎, 郭丽红, 丁彤, 程庆鹏, 田野, 李新刚.蒸氨法制备铜硅催化剂的二甲醚水蒸气重整制氢性能[J].物理化学学报, 2017, 33(8):1699-1708. doi: 10.3866/PKU.WHXB201704263

    WANG Xin-lei, MA Kui, GUO Li-hong, DING Tong, CHENG Qing-peng, TIAN Ye, LI Xin-gang. Catalytic performance for hydrogen production through steam reforming of dimethyl ether over silica supported copper catalysts synthesized by ammonia evaporation method[J]. Acta Phys-Chim Sin, 2017, 33(8):1699-1708. doi: 10.3866/PKU.WHXB201704263
    [26] 邱坤赞, 郭文文, 王海霞, 朱玲君, 王树荣. Cu/SiO2催化剂结构对乙酸甲酯加氢性能的影响[J].物理化学学报, 2015, 31(6):1129-1136. doi: 10.3866/PKU.WHXB201503272

    QIU Kun-zan, GUO Wen-wen, WANG Hai-xia, ZHU Ling-jun, WANG Shu-rong. Influence of catalyst structure on performance of Cu/SiO2 in hydrogenation of methyl acetate[J]. Acta Phys-Chim Sin, 2015, 31(6):1129-1136. doi: 10.3866/PKU.WHXB201503272
    [27] LI F J, WANG L G, HAN X, CAO Y, HE P, LI H Q. Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method[J]. Int J Hydrogen Energy, 2017, 42(4):2144-2156. doi: 10.1016/j.ijhydene.2016.09.064
    [28] GHODSELAHI T, VESAGHI M A, SHAFIEKHANI A, BAGHIZADEH A, LAMEⅡ M. XPS study of the Cu@Cu2O core-shell nanoparticles[J]. Appl Surf Sci, 2008, 255(5):2730-2734. doi: 10.1016/j.apsusc.2008.08.110
    [29] YU X, ZHAI S B, ZHU W C, GAO S, YAN J B, YUAN H J, CHEN L L, LUO J, ZHANG W X, WANG Z L. The direct transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts that contain copper phyllosilicate[J]. J Chem Sci, 2014, 126(4):1013-1020. doi: 10.1007/s12039-014-0659-z
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  34
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 修回日期:  2018-04-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回