留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD

ZHAI Xue-jiao LI Chuang DI Xin YIN Dong-dong LIANG Chang-hai

翟雪娇, 李闯, 邸鑫, 殷冬冬, 梁长海. Cu/MgO催化剂的MOCVD法制备及其γ-戊内酯加氢制1, 4-戊二醇性能[J]. 燃料化学学报(中英文), 2017, 45(5): 537-546.
引用本文: 翟雪娇, 李闯, 邸鑫, 殷冬冬, 梁长海. Cu/MgO催化剂的MOCVD法制备及其γ-戊内酯加氢制1, 4-戊二醇性能[J]. 燃料化学学报(中英文), 2017, 45(5): 537-546.
ZHAI Xue-jiao, LI Chuang, DI Xin, YIN Dong-dong, LIANG Chang-hai. Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 537-546.
Citation: ZHAI Xue-jiao, LI Chuang, DI Xin, YIN Dong-dong, LIANG Chang-hai. Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 537-546.

Cu/MgO催化剂的MOCVD法制备及其γ-戊内酯加氢制1, 4-戊二醇性能

基金项目: 

the National Natural Science Foundation of China 21573031

the National Natural Science Foundation of China 21428301

the Fundamental Research Funds for the Central Universities DUT15ZD106

Program for Excellent Talents in Dalian City 2016RD09

详细信息
  • 中图分类号: O643.36

Preparation of Cu/MgO catalysts for γ-valerolactone hydrogenation to 1, 4-pentanediol by MOCVD

Funds: 

the National Natural Science Foundation of China 21573031

the National Natural Science Foundation of China 21428301

the Fundamental Research Funds for the Central Universities DUT15ZD106

Program for Excellent Talents in Dalian City 2016RD09

More Information
  • 摘要: 以Cu (acac)2为金属有机铜前体, 层状MgO为载体, 采用金属有机化学气相沉积方法 (MOCVD) 制备了Cu/MgO催化剂, 并通过X射线衍射 (XRD)、傅里叶变换红外光谱 (FT-IR)、场发射扫描电镜 (FE-SEM)、透射电子显微镜 (TEM) 和N2物理吸附等方法对Cu/MgO催化剂结构进行表征.结果表明, 有机铜前体沉积在了MgO上, 并且在沉积后, 载体MgO的晶体结构仍然保留完整.利用生物质平台分子γ-戊内酯加氢反应来评价Cu/MgO催化剂的催化性能.研究表明, 在473 K和10 MPa反应条件下, 18% Cu/MgO催化剂表现出优异的催化活性 (90.5%) 和1, 4-戊二醇选择性 (94.4%), 且催化剂循环三次, 催化活性没有显著降低.
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Reaction pathways of the conversion of γ-GVL to value-added chemicals and fuels

    Figure  2  TG/DTA curve of the precursor in Ar with a heating rate of 10 ℃/min

    Figure  3  FT-IR spectra of (a) MgO, (b) Cu (acac)2, (c) Cu (acac)2/MgO and (d) Cu/MgO

    Figure  4  FE-SEM images of (a), (b) MgO, (c) Cu (acac)2/MgO and (d) Cu/MgO

    Figure  5  N2 adsorption-desorption isotherms of the MgO and Cu/MgO catalysts with different metal loadings after reduced at 573 K

    Figure  6  XRD patterns of (a) MgO, (b) 6% Cu/MgO, (c) 9% Cu/MgO, (d) 12% Cu/MgO, and (e) 18% Cu/MgO

    Figure  7  TEM images of (a), (b) 18% Cu/MgO before reaction, (c), (d) 18% Cu/MgO after reaction

    Figure  8  Effect of reaction temperature (a) and H2 pressure (b) on conversion and selectivity over Cu/MgO reaction conditions: 0.4 g Cu/MgO (18% Cu), 2.5% dioxane solution of γ-GVL 20 g, 10 h (a) 8.0 MPa of H2 pressure and (b) 473 K

    Figure  9  XRD patterns of (a) 18% Cu/MgO, (b) 18% Cu/MgO after reaction, (c) 18% Cu/MgO treated at 773 K in air after reaction, (d) reduced 18% Cu/MgO after the treatment of (c) sample

    Figure  10  Reusability of Cu/MgO catalyst in dioxane reaction conditions: 473 K, 8.0 MPa H2 pressure, 0.4 g Cu/MgO (18% Cu), 2.5% dioxane solution of γ-GVL 20 g, 10 h

    Table  1  Hydrogenation of γ-GVL with various loads copper-catalysts in dioxane

    Entry Metal loading w/% Conversion x/% Selectivity s/%
    1, 4-PDO 2-MTHF n-pentanol
    1 0 0 0 0 0
    2 6 71.4 78.8 8.3 7.4
    3 9 75.0 85.7 5.9 3.0
    4 12 78.5 65.0 14.1 16.0
    5 18 80.0 61.5 17.7 18.3
    reaction conditions: 8.0 MPa H2 pressure, 513 K, 0.4 g Cu/MgO, 2.5% dioxane solution of γ-GVL 20 g, 10 h
    下载: 导出CSV

    Table  2  Cu content of the catalysts after reaction by ICP

    Sample Fresh Used1 Used2 Used3
    Cu content w/% 18.0 13.5 10.8 9.1
    下载: 导出CSV
  • [1] BESSON M, GALLEZOT P, PINEL C. Conversion of biomass into chemicals over metal catalysts[J]. Chem Rev, 2014, 114(3): 1827-1870. doi: 10.1021/cr4002269
    [2] AL-SHAAL M G, DZIERBINSKI A, PALKOVITS R. Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: A reaction network analysis[J]. Green Chem, 2014, 16(3): 1358-1364. doi: 10.1039/C3GC41803K
    [3] GEBOERS J A, VAN DE VYVER S, OOMS R, OP DE BEECK B, JACOBS P A, SELS B F. Chemocatalytic conversion of cellulose: Opportunities, advances and pitfalls[J]. Catal Sci Technol, 2011, 1(5): 714-726. doi: 10.1039/c1cy00093d
    [4] LIANG D, LIU C W, DENG S P, ZHU Y L, LV C X. Aqueous phase hydrogenolysis of glucose to 1, 2-propanediol over copper catalysts supported by sulfated spherical carbon[J]. Catal Commun, 2014, 54: 108-113. doi: 10.1016/j.catcom.2014.05.027
    [5] MAI E F, MACHADO M A, DAVIES T E, LOPEZ-SANCHEZ J A, SILVA V T. Molybdenum carbide nanoparticles within carbon nanotubes as superior catalysts for γ-valerolactone production via levulinic acid hydrogenation[J]. Green Chem, 2014, 16(9): 4092-4097. doi: 10.1039/C4GC00920G
    [6] VARKOLU M, VELPULA V, GANJI S, BURRI D R, KAMARAJU S R R. Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: Highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid[J]. RSC Adv, 2015, 5(70): 57201-57210. doi: 10.1039/C5RA10857H
    [7] WANG J, JAENICKE S, CHUAH G K. Zirconium-Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein-Ponndorf-Verley reduction[J]. RSC Adv, 2014, 4(26): 13481-13489. doi: 10.1039/c4ra01120a
    [8] DU X L, BI Q Y, LIU Y M, CAO Y, HE H Y, FAN K N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1, 4-pentanediol or 2-methyltetrahydrofuran[J]. Green Chem, 2012, 14(4): 935-939. doi: 10.1039/c2gc16599f
    [9] PACE V, HOYOS P, FERNANDEZ M, SINISTERRA J V, ALCANTARA A R. 2-methyltetrahydrofuran as a suitable green solvent for phthalimide functionalization promoted by supported KF[J]. Green Chem, 2010, 12(8): 1380-1382. doi: 10.1039/c0gc00113a
    [10] BOND J Q, ALONSO D M, WEST R M, DUMESIC J A. γ-valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water[J]. Langmuir, 2010, 26(21): 16291-16298. doi: 10.1021/la101424a
    [11] GEILEN F M, ENGENDAHL B, HOLSCHER M, KLANKERMAYER J, LEITNER W. Selective homogeneous hydrogenation of biogenic carboxylic acids with[Ru (TriPhos) H]+: A mechanistic study[J]. J Am Chem Soc, 2011, 133(36): 14349-14358. doi: 10.1021/ja2034377
    [12] TUKACS J M, NOVAK M, DIBO G, MIKA L T. An improved catalytic system for the reduction of levulinic acid to γ-valerolactone[J]. Catal Sci Technol, 2014, 4(9): 2908-2912. doi: 10.1039/C4CY00719K
    [13] GEILEN F M, ENGENDAHL B, HARWARDT A, MARQUARDT W, KLANKERMAYER J, LEITNER W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system[J]. Angew Chem Int Ed, 2010, 49(32): 5510-5514. doi: 10.1002/anie.201002060
    [14] MEHDI H, FABOS V, TUBA R, BODOR A, MIKA L T, HORVATH I T. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1, 4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes[J]. Top Catal, 2008, 48(1/4): 49-54.
    [15] PHANOPOULOS A, WHITE A J P, LONG N J, MILLER P W. Catalytic transformation of levulinic acid to 2-methyl-tetrahydrofuran using ruthenium-N-triphos complexes[J]. ACS Catal, 2015, 5(4): 2500-2512. doi: 10.1021/cs502025t
    [16] MIZUGAKI T, NAGATSU Y, TOGO K, MAENO Z, MITSUDOME T, JITSUKAWA K, KANEDA K. Selective hydrogenation of levulinic acid to 1, 4-pentanediol in water using a hydroxyapatite-supported Pt-Mo bimetallic catalyst[J]. Green Chem, 2015, 17(12): 5136-5139. doi: 10.1039/C5GC01878A
    [17] BUITRAGO S R, SERRANO R J C, RODRIGUEZ R F, SEPULVEDA E A, DUMESIC J A. Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation[J]. Green Chem, 2012, 14(12): 3318-3324. doi: 10.1039/c2gc36161b
    [18] LI M, LI G, LI N, WANG A Q, DONG W J, WANG X D, CONG Y. Aqueous phase hydrogenation of levulinic acid to 1, 4-pentanediol[J]. Chem Commun, 2014, 50(12): 1414-1416. doi: 10.1039/c3cc48236g
    [19] BERMUDEZ J M, MENENDEZ J A, ROMERO A A, SERRANO E, GARCIA M J, LUQUE R. Continuous flow nanocatalysis: Reaction pathways in the conversion of levulinic acid to valuable chemicals[J]. Green Chem, 2013, 15(10): 2786-2792. doi: 10.1039/c3gc41022f
    [20] XU Q, LI X, PAN T, YU C G, DENG J, GUO Q X, FU Y. Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone[J]. Green Chem, 2016, 18(5): 1287-1294. doi: 10.1039/C5GC01454A
    [21] LIU C W, ZHANG C H, LIU K K, WANG Y, FAN G X, SUN S K, XU J, ZHU Y L, LI Y W. Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: A comparative study of active metals[J]. Biomass Bioenergy, 2015, 72: 189-199. doi: 10.1016/j.biombioe.2014.11.005
    [22] MILANOV A P, THIEDE T B, DEVI A, FISCHER R A. Homoleptic gadolinium guanidinate: A single source precursor for metal-organic chemical vapor deposition of gadolinium nitride thin films[J]. J Am Chem Soc, 2009, 131(47): 17062-17063. doi: 10.1021/ja907952g
    [23] JIANG M M, ZHANG M M, LI C, WILLIAMS C T, LIANG C H. CVD of Pt (C5H9)2 to synthesize highly dispersed Pt/SBA-15 catalysts for hydrogenation of chloronitrobenzene[J]. Chem Vap Deposition, 2014, 20(4/5/6): 146-151.
    [24] ZHAO A Q, CHEN X, GUAN J C, WILLIAMS C T, LIANG C H. The formation mechanism of cobalt silicide on silica from Co (SiCl3)(CO)4 by in situ Fourier transform infrared spectroscopy[J]. Phys Chem Chem Phys, 2011, 13(20): 9432-9438. doi: 10.1039/c1cp20197b
    [25] GUAN J C, JIN J H, CHEN X, ZHANG B S, SU D S, LIANG C H. Preparation and formation mechanism of highly dispersed manganese silicide on silica by MOCVD of Mn (CO)5SiCl3[J]. Chem Vap Deposition, 2013, 19(1/3): 68-73.
    [26] ZHANG Y, LAM F L Y, HU X J, YAN Z F, SHENG P. Fabrication of copper nanowire encapsulated in the pore channels of SBA-15 by metal organic chemical vapor deposition[J]. J Phys Chem C, 2007, 111(34): 12536-12541. doi: 10.1021/jp073786x
    [27] NASIBULIN A G, MOISALA A, BROWN D P, KAUPPINEN E I. Carbon nanotubes and onions from carbon monoxide using Ni (acac)2 and Cu (acac)2 as catalyst precursors[J]. Carbon, 2003, 41(14): 2711-2724. doi: 10.1016/S0008-6223(03)00333-6
    [28] MULLER M, LEBEDEV O I, FISCHER R A. Gas-phase loading of[Zn4O (btb)2] (MOF-177) with organometallic CVD-precursors: Inclusion compounds of the type[LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177[J]. J Mater Chem, 2008, 18(43): 5274-5281. doi: 10.1039/b810989c
    [29] BECKER M, D'ALNONCOURT R N, KAHLER K, SEKULIC J, FISCHER R A, MUHLER M. The synthesis of highly loaded Cu/Al2O3and Cu/ZnO/Al2O3 catalysts by the two-step CVD of Cu (Ⅱ) diethylamino-2-propoxide in a fluidized-bed reactor[J]. Chem Vap Deposition, 2010, 16(1/3): 85-92.
    [30] NAUMANN D R, BECKER M, SEKULIC J, FISCHER R A, MUHLER M. The preparation of Cu/Al2O3 catalysts via CVD in a fluidized-bed reactor[J]. Surf Coat Technol, 2007, 201(22/23): 9035-9040.
    [31] BECKER R, PARALA H, HIPLER F, TKACHENKO O P, KLEMENTIEV K V, GRUNERT W, WILMER H, HINRICHSEN O, MUHLER M, BIRKNER A, WOLL C, SCHAFER S, FISCHER R A. MOCVD-loading of mesoporous siliceous matrices with Cu/ZnO: Supported catalysts for methanol synthesis[J]. Angew Chem Int Ed, 2004, 43(21): 2839-2842. doi: 10.1002/(ISSN)1521-3773
    [32] ZHANG G Y, WANG X X, LONG J J, XIE L L, DING Z X, WU L, LI Z H, FU X Z. Deposition cemistry of Cu[OCH (Me) CH2NMe2]2 over mesoporous slica[J]. Chem Mater, 2008, 20(14): 4565-4575. doi: 10.1021/cm7027228
    [33] ZHANG G Y, LONG J J, WANG X X, DAI W X, LI Z H, WU L, FU X Z. Controlled synthesis of pure and highly dispersive Cu (Ⅱ), Cu (Ⅰ), and Cu (0)/MCM-41 with Cu[OCHMeCH2NMe2]2/MCM-41 as precursor[J]. New J Chem, 2009, 33(10): 2044-2050. doi: 10.1039/b906352h
    [34] LIAN J B, ZHANG C H, WANG P, NG D H L. Template-free hydrothermal synthesis of mesoporous MgO nanostructures and their applications in water treatment[J]. Chem Asian J, 2012, 7(11): 2650-2655. doi: 10.1002/asia.201200665
    [35] ZHANG M M, GUAN J C, ZHANG B S, SU D S, WILLIAMS C T, LIANG C H. Chemical vapor deposition of Pd (C3H5)(C5H5) to synthesize Pd@MOF-5 catalysts for suzuki coupling reaction[J]. Catal Lett, 2012, 142(3): 313-318. doi: 10.1007/s10562-012-0767-7
    [36] VERTOPRAKHOV V N, KRUPODER S A. Preparation of thin copper films from the vapour phase of volatile copper (Ⅰ) and copper (Ⅱ) derivatives by the CVD method[J]. Russ Chem Rev, 2000, 69(12): 1057-1082. doi: 10.1070/RC2000v069n12ABEH000572
    [37] JIANG K, SHENG D, ZHANG Z H, FU J, HOU Z Y, LU X Y. Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst[J]. Catal Today, 2016, 274: 55-59. doi: 10.1016/j.cattod.2016.01.056
    [38] HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chem, 2012, 14(4): 1064-1072. doi: 10.1039/c2gc16558a
    [39] SADABA L, GRANADOS M L, RIISAGER A, TAARNING E. Deactivation of solid catalysts in liquid media: The case of leaching of active sites in biomass conversion reactions[J]. Green Chem, 2015, 17(8): 4133-4145. doi: 10.1039/C5GC00804B
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  19
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-04-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回