留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F改性Hβ对Mo-Ni/F-Hβ催化剂的FCC汽油硫转移反应催化性能的影响

梁生荣 刘峰 王倩 武瑞瑞 张君涛 申志兵

梁生荣, 刘峰, 王倩, 武瑞瑞, 张君涛, 申志兵. F改性Hβ对Mo-Ni/F-Hβ催化剂的FCC汽油硫转移反应催化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(4): 405-413.
引用本文: 梁生荣, 刘峰, 王倩, 武瑞瑞, 张君涛, 申志兵. F改性Hβ对Mo-Ni/F-Hβ催化剂的FCC汽油硫转移反应催化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(4): 405-413.
LIANG Sheng-rong, LIU Feng, WANG Qian, WU Rui-rui, ZHANG Jun-tao, SHEN Zhi-bing. Effect of modification to Hβ with F on the performance of Mo-Ni/F-Hβ catalyst in the sulfur transfer reactions of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 405-413.
Citation: LIANG Sheng-rong, LIU Feng, WANG Qian, WU Rui-rui, ZHANG Jun-tao, SHEN Zhi-bing. Effect of modification to Hβ with F on the performance of Mo-Ni/F-Hβ catalyst in the sulfur transfer reactions of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 405-413.

F改性Hβ对Mo-Ni/F-Hβ催化剂的FCC汽油硫转移反应催化性能的影响

基金项目: 

中国石油科技创新基金项目 2017D-5007-0401

西安石油大学研究生创新与实践能力培养项目 YCS19113074

详细信息
  • 中图分类号: TE624.9

Effect of modification to Hβ with F on the performance of Mo-Ni/F-Hβ catalyst in the sulfur transfer reactions of FCC gasoline

Funds: 

China Petroleum Science and Technology Innovation Fund Project 2017D-5007-0401

Practical Ability Training Project of Xi'an University of Petroleum YCS19113074

More Information
    Corresponding author: SHEN Zhi-bing, Tel: 15388631667, E-mail: szb@xsyu.edu.cn
  • 摘要: 通过添加不同含量的F对Hβ分子筛进行改性,制备Mo-Ni/F-Hβ催化剂,采用N2吸附-脱附、NH3-TPD、XRD、Py-FTIR和SEM等方法对该催化剂进行了表征,研究了F改性对该Mo-Ni/F-Hβ催化剂在FCC汽油中硫醇醚化和噻吩烷基化等硫转移反应中催化性能的影响。结果表明,以0.5%含量F修饰的β分子筛制备的催化剂对硫醚化反应和噻吩烷基化反应具有明显的促进作用,并能提高对二烯烃选择性加氢的选择性。F的引入可增强Hβ分子筛的中强酸量,降低强酸量,并提高了L/B酸中心比例,这些变化对催化性能改善起到重要作用。
  • 图  1  固定床管式反应器装置流程示意图

    Figure  1  Flow chart of fixed bed tubular reactor

    1: hydrogen source; 2: drier; 3: filter; 4: pressure reducing valve; 5: gas flowmeter; 6: one way valve; 7: gas feed vent; 8: reactor inlet pressure; 9: electronic balance; 10: liquid feed; 11: filter; 12: feed pump; 13: one way valve; 14: liquid feed vent; 15: gas liquid mixing tee; 16: temperature controller; 17: temperature displayer; 18: thermocouple for temperature controller; 19: thermocouple temperature displayer; 20: tubular reactor; 21: heating furnace; 22: condenser; 23: high separator; 24: low separator; 25: cooling water outlet; 26: cooling water inlet; 27: reactor outlet pressure; 28: dryer; 29: back pressure valve; 30: sampling valve; 31: sampling pressure indicator; 32: rotameter; 33: sampling port; 34: sampling vent; 35: tail gas vent

    图  2  不同F处理量对H β分子筛处理前后的XRD谱图

    Figure  2  XRD patterns of H β zeolites before and after F modification

    a: H β; b: H β (0.3%F); c: H β (0.5%F); d: H β (0.7%F)

    图  3  H β载体改性前后N2吸附-脱附等温线

    Figure  3  Adsorption-desorption isotherms of H β zeolites before and after F modification

    图  4  H β载体改性前后的孔径分布

    Figure  4  Pore size distributions of H β zeolites before and after F modification

    图  5  F处理前后H β分子筛的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of H β zeolites before and after F modification

    图  6  F处理前后H β分子筛的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of H β zeolites before and after F modification

    图  7  H β、H β (0.3%F)、H β (0.5%F)和H β (0.7%F)的SEM照片

    Figure  7  SEM images of H β, H β (0.3%F), H β (0.5%F) and H β (0.7%F)

    图  8  F处理H β分子筛对硫转移过程噻吩烷基化转化率的影响

    Figure  8  Conversion of thiophene over H β zeolites before and after F modification

    图  9  F处理H β分子筛对硫转移过程正丁硫醇醚化反应的转化率

    Figure  9  Conversion of n-butyl mercaptan over H β zeolites before and after F modification

    图  10  F处理前后H β分子筛对硫转移过程烯烃类化合物加氢性能测试

    Figure  10  Hydrogenation of olefins (di-olefins) over H β zeolites before and after F modification

    表  1  催化剂中F、Ni、Mo元素检测结果

    Table  1  Contents of F, Ni and Mo elements in various F-modified Mo-Ni/F-H β catalysts

    Catalyst Element content w/(μg·g-1)
    F Ni Mo
    Mo-Ni/F-Hβ(0 F) 0 3.64 11.56
    Mo-Ni/F-Hβ(0.3%F) 0.29 3.77 11.83
    Mo-Ni/F-Hβ(0.5%F) 0.49 3.64 11.56
    Mo-Ni/F-Hβ(0.7%F) 0.68 3.59 11.88
    note: the contents of Ni and Mo in the Mo-Ni/F-H β catalyst (5.78% MoO3 and 15% NiO) are 11.79 and 3.85 μ g/g, respectively
    下载: 导出CSV

    表  2  不同F处理量对H β分子筛相对结晶度分析

    Table  2  Relative crystallinity of F-modified H β zeolites determined by XRD

    Zeolite Peak at 7.88° Peak at 22.55° Relative
    crystallinity η/%
    area retention value area retention value
    Hβ(0) 998.22 100% 398.64 100% 100
    Hβ(0.3%F) 905.38 90.70% 359.47 90.17% 90.55
    Hβ(0.5%F) 878.61 88.02% 351.42 88.14% 88.06
    Hβ(0.7%F) 852.12 85.36% 339.36 85.13% 85.30
    下载: 导出CSV

    表  3  F处理前后H β分子筛孔结构参数

    Table  3  Textural properties of H β zeolites before and after F modification

    Zeolite Specific surface area A/(m2·g-1) Pore volume v/(cm3·g-1)
    ABET Amicro Ameso vtotal vmicro vmeso
    Hβ(0) 475 351 124 0.43 0.20 0.23
    Hβ(0.3%F) 465 334 131 0.43 0.19 0.24
    Hβ(0.5%F) 464 327 137 0.43 0.18 0.25
    Hβ(0.7%F) 463 290 173 0.54 0.17 0.37
    下载: 导出CSV

    表  4  F处理前后H β分子筛酸量变化

    Table  4  Acidity of H β zeolites before and after F modification

    Zeolite Lewis /
    (μmol·g-1)
    Brønsted/
    (μmol·g-1)
    Total acid/
    (μmol·g-1)
    L/B
    Hβ(0) 117.96 634.88 752.84 0.19
    Hβ(0.3%F) 426.51 459.92 886.43 0.93
    Hβ(0.5%F) 678.12 297.37 975.49 2.28
    Hβ(0.7%F) 520.56 250.73 771.29 2.08
    下载: 导出CSV
  • [1] YU F, WANG Q, YUAN B, XIE C X, YU S T. Alkylation desulfurization of FCC gasoline over organic-inorganic heteropoly acid catalyst[J]. J Chem Eng, 2017, 309:298-304. doi: 10.1016/j.cej.2016.10.003
    [2] SHEN Z, ZHANG J, REN T, LIANG S. The performance of benzenesulfonic acid catalyst on the alkylation of thiophenic sulfur[J]. Appl Petrochem Res, 2016, 6(1):35-40. doi: 10.1007/s13203-015-0116-z
    [3] FU W, ZHANG L, WU D, YU Q, TANG T, TANG T. Mesoporous molecular sieve ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene[J]. Ind Eng Chem Res, 2016, 55(26):7085-7095. doi: 10.1021/acs.iecr.6b01583
    [4] GUO B, LI Y. Analysis and simulation of reactive distillation for gasoline alkylation desulfurization[J]. Chem Eng Sci, 2012, 72:115-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f9c702376ccb9f5c66d2b8fb9318c77
    [5] YU Y, LI R, LI Q. Alkylation of thiophenic compounds with 1-hexene over sulfonated solid acid catalysts[J]. Prog React Kinet Mech, 2013, 38(4):425-430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9680e7f55300b9f8d2f64693b4e596c7
    [6] SAAD A, AL-BOGAMI, HUGO I. Catalytic conversion of benzothiophene over a H-ZSM5 based catalyst[J]. Fuel, 2013, 108:490-501. doi: 10.1016/j.fuel.2012.11.008
    [7] RISTIĆ A, FISCHER F, HAUER A, LOGAR N Z. Improved performance of binder-free zeolite Y for low-temperature sorption heat storage[J]. J Mater Chem A, 2018, 6(24):11521-11530. doi: 10.1039/C8TA00827B
    [8] GUO B, WANG R, LI Y. The performance of solid phosphoric acid catalysts and macroporous sulfonic resins on gasoline alkylation desulfurization[J]. Fuel Process Technol, 2010, 91(11):1731-1735. doi: 10.1016/j.fuproc.2010.07.012
    [9] FAVARETTO L, AN J, SAMBO M, DE NISI A, BETTINI C, MELUCCI M, KOVTUN A, LISCIO A, PALERMO V, BOTTONI A, ZERBETTO F, CALVARESI M, ZERBETTO, F. Graphene oxide promotes site-selective allylic alkylation of thiophenes with alcohols[J]. Org Lett, 2018, 20(12):3705-3709 doi: 10.1021/acs.orglett.8b01531
    [10] SRIVASTAVA V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. Rsc Adv, 2012, 2(3):759-783. doi: 10.1039/C1RA00309G
    [11] 徐亚荣, 沈本贤, 徐新良, 赵基钢, 刘刚.固体混合酸催化FCC汽油烷基化硫的转移性能[J].华东理工大学学报(自然科学版), 2010, 36(5):633-638. doi: 10.3969/j.issn.1006-3080.2010.05.006

    XU Ya-rong, SHEN Ben-xian, XU Xin-liang, ZHAO Ji-gang, LIU Gang. Transfer performance of solid mixed acid catalytic alkylation of sulfur in FCC gasoline[J]. J East China Univ Technol:Nat Sci Ed, 2010, 36(5):633-638. doi: 10.3969/j.issn.1006-3080.2010.05.006
    [12] NOCCA J L, COSYNS J, DEBUISSCHERT Q, DIDILLON B. The domino interaction of refinery processes for gasoline quality attainment. San Antonio, TX: Proceedings of the NPRA Annual Meeting, March 2000, AM-00-61.
    [13] 周志远.二烯硫醚化酸性催化剂研究[C]//第十一届全国青年催化学术会议论文集(下).中国化学会催化委员会: 中国石油大学(华东)化学化工学院, 2007: 2.

    Zhou Zhi-yuan. Study on acid catalysts for diene thioetherification[C]//Catalysis Committee of the Chinese Chemical Society. Proceedings of the 11th National Youth catalysis Academic Conference (2). Catalysis Committee of the Chinese Chemical Society: School of chemistry and chemistry, China University of Petroleum (East China), 2007: 2.
    [14] 休.M.帕特曼.去硫醇的方法: CN, 00812936.3[P]. 2000-07-03.

    PATMAN H M. Method of mercaptan removal: CN, 00812936.3[P]. 2000-07-03.
    [15] 丹尼斯.赫恩, 托马斯.P.希基.汽油脱硫方法: CN, 96196515.0[P]. 1998-09-06.

    HEARN D, HICKEY T P. Gasoline desulfurization method: CN, 96196515.0[P]. 1998-09-06.
    [16] ZHANG Z, GUO X, LIU S, ZHU X, XU L. Modification of Hβ molecular sieve by fluorine and its influence on olefin alkylation thiophenic sulfur in gasoline[J]. Fuel Process Technol, 2008, 89(1):103-110. doi: 10.1016/j.fuproc.2007.08.003
    [17] WANG R, WAN J, LI Y, SUN H. An improvement of MCM-41 supported phosphoric acid catalyst for alkylation desulfurization of fluid catalytic cracking gasoline[J]. Fuel, 2015, 143:504-511. doi: 10.1016/j.fuel.2014.11.093
    [18] SHI R, LI Y, WANG R, GUO B. Alkylation of thiophenic compounds with olefins and its kinetics over MCM-41 supported phosphoric acid in fcc gasoline[J]. Catal Lett, 2010, 139(3/4):114-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=423eed13a8bb2ea67cdc0302471db9b2
    [19] 潘红艳, 田敏, 林倩.硅铝比对ZSM-5分子筛催化甲醇制烯烃性能的影响[J].天然气化工·C1化学与化工, 2015, 40(1):9-12. http://d.old.wanfangdata.com.cn/Periodical/trqhg2015010004

    PAN Hong-yan, TIAN Min, LIN Qian. Effect of silicon aluminum ratio on the performance of ZSM-5 zeolite catalyst for methanol to olefin[J]. Nat Gas Ind, 2015, 40(1):9-12. http://d.old.wanfangdata.com.cn/Periodical/trqhg2015010004
    [20] BRZOZOWSKI R, SKUPIŃSKI W. Molecular sieve pore entrance effect on shape selectivity in naphthalene isopropylation[J]. J Catal, 2002, 210(2):313-318. https://www.sciencedirect.com/science/article/pii/S0021951702937024
    [21] COLON G, FERINO I, ROMBI E. Liquid-phase alkylation of naphthalene by isopropanol over molecular sieves. Part 1:HY molecular sieves[J]. Appl Catal A:Gen, 1998, 168(1):81-92. doi: 10.1016/S0926-860X(97)00346-3
    [22] SMIRNIOTIS P G, RUCKENSTEIN E J. Comparison between zeolite β and γ-Al2O3 supported Pt for reforming reactions[J]. J Catal, 1993, 140(2):526-542. https://www.sciencedirect.com/science/article/pii/S0021951783711036
    [23] RUCKENSTEIN E, SMIRNIOTIS P G. Two sources of synergism in the reforming ofn-hexane, methylcyclopentane, methylcyclohexane mixtures over composites of basic and acidic zeolites[J]. Catal Lett, 1994, 24(1/2):123-132. http://cn.bing.com/academic/profile?id=2c340b320dff41a2ff71789d7a717a42&encoded=0&v=paper_preview&mkt=zh-cn
    [24] SMIRNIOTIS P G, RUCKENSTEIN E. Increased aromatization in the reforming of mixtures of n-hexane, methylcyclopentane and methylcyclohexane over composites of Pt/BaKL zeolite with Pt/β or Pt/USY zeolites[J]. Appl Catal A:Gen, 1995, 123(1):59-88. doi: 10.1016/0926-860X(94)00241-X
    [25] BLACKMOND D G, GOODWIN J G, LESTER J E. In situ Fourier transform infrared spectroscopy study of HY cracking catalysts:Coke formation and the nature of the active sites[J]. J Catal, 1982, 78(1):34-43. http://cn.bing.com/academic/profile?id=07b9f0172dd20fc7eafeeeb3bd30335c&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  29
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2020-01-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回