留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载碳酸钠煤焦催化气化反应特性研究

李献宇 郭庆华 丁路 于广锁

李献宇, 郭庆华, 丁路, 于广锁. 负载碳酸钠煤焦催化气化反应特性研究[J]. 燃料化学学报(中英文), 2016, 44(12): 1422-1429.
引用本文: 李献宇, 郭庆华, 丁路, 于广锁. 负载碳酸钠煤焦催化气化反应特性研究[J]. 燃料化学学报(中英文), 2016, 44(12): 1422-1429.
LI Xian-yu, GUO Qing-hua, DING Lu, YU Guang-suo. Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1422-1429.
Citation: LI Xian-yu, GUO Qing-hua, DING Lu, YU Guang-suo. Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1422-1429.

负载碳酸钠煤焦催化气化反应特性研究

基金项目: 

国家自然科学基金 21376081

详细信息
  • 中图分类号: TQ546

Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3

More Information
  • 摘要: 基于热重分析仪开展负载碳酸钠神府烟煤/遵义无烟煤煤焦气化实验,并借助扫描电子显微镜和孔结构及比表面积分析仪表征焦样孔结构及表观结构变化,考察了反应温度(650-800℃)、气化剂(水蒸气、二氧化碳)及碳酸钠负载量(钠离子负载量2.2%、4.4%、6.6%,质量分数)对神府烟煤/遵义无烟煤焦样气化反应活性的影响。结果表明,碳酸钠有利于促进神府/遵义煤热解过程孔隙结构的发展。在二氧化碳气氛下,适宜催化剂负载量使神府烟煤反应活性提高,过多负载催化剂堵塞煤焦内部孔隙结构,使得气化反应活性降低,遵义无烟煤反应活性随负载量增加而提高,两者反应活性均随温度升高而提高。在水蒸气气氛下,神府烟煤/遵义无烟煤在一定条件下反应活性随催化剂负载量增大、温度升高而提高。碳酸钠的添加能够在保证气化反应性的前提下降低气化反应温度和活化能。
  • 图  1  负载碳酸钠煤/煤焦电镜照片

    Figure  1  SEM photographs of coal/char mixed with Na2CO3

    (a): SF-raw-4.4Na; (b): SF-4.4Na-800P; (c): SF-raw-6.6Na; (d): SF-6.6Na-800P; (e): ZY-raw-4.4Na; (f): ZY-4.4Na-800P; (g): ZY-raw-6.6Na; (h): ZY-6.6Na-800P; 1, 2, 3: different surface area of coal/char

    图  2  神府/遵义样品催化和非催化气化反应性比较

    Figure  2  Gasification reactivity comparison of SF/ZY coal with and without Na2CO3

    (a): 650℃-CO2 gasification; (b): 700℃-CO2 gasification; (c): 750℃-CO2 gasification; (d): 800℃-CO2 gasification ■: SF-raw-800P; □: SF-2.2Na-800P; ▲: SF-4.4Na-800P; △: SF-6.6Na-800P; ▼: ZY-raw-800P; ▽: ZY-2.2Na-800P; ●: ZY-4.4Na-800P; ○: ZY-6.6Na-800P

    图  3  神府/遵义样品催化和非催化气化反应性比较

    Figure  3  Gasification reactivity comparison of SF and ZY coal with and without Na2CO3

    (a): 650℃-H2O gasification; (b): 700℃-H2O gasification; (c): 750℃-H2O gasification; (d): 800℃-H2O gasification ■: SF-raw-800P; □: SF-2.2Na-800P; ▲: SF-4.4Na-800P; △: SF-6.6Na-800P; ▼: ZY-raw-800P; ▽: ZY-2.2Na-800P; ●: ZY-4.4Na-800P; ○: ZY-6.6Na-800P

    图  4  神府烟煤和遵义无烟煤不同气化温度下初始反应速率

    Figure  4  Initial reaction rate (R0) of SF and ZY samples at different gasification temperatures

    图  5  神府和遵义样品的Arrhenius曲线

    Figure  5  Arrhenius curves of SF (a) and ZY (b) samples

    ■: SF-2.2Na-800P-CO2; ●: SF-4.4Na-800P-CO2; ▲: SF-6.6Na-800P-CO2; : ZY-2.2Na-800P-CO2; : ZY-4.4Na-800P-CO2; : ZY-6.6Na-800P-CO2

    表  1  样品的煤质分析

    Table  1  Characteristic data of tested coal samples

    SampleProximate analysis wd /%Ultimate analysis wd/%Ash fusion temperature t/℃
    VFC ACHNSODTSTHTFT
    SF35.4258.296.2979.142.321.120.7710.361152116711751179
    ZY7.5973.4618.9576.572.131.100.830.421345137013951463
    下载: 导出CSV

    表  2  原料的主要灰组分

    Table  2  The main ash compositions of raw materials

    SampleComposition w/%
    SiO2Al2O3Fe2O3CaONa2OK2OMgO
    SF33.3612.449.1127.781.730.671.34
    ZY43.0520.7821.437.420.860.522.90
    下载: 导出CSV

    表  3  负载碳酸钠煤/煤焦表面的元素组成

    Table  3  Elemental composition of coal/char with or without Na2CO3

    Contact surfaceComposition w/%Contact surfaceComposition w/%
    CONaCONa
    SF-raw-4.4Na-129.530.322.5ZY-raw-4.4Na-133.240.58.5
    SF-raw-4.4Na-248.525.27.0ZY-raw-4.4Na-237.518.218.0
    SF-raw-4.4Na-346.326.68.0ZY-raw-4.4Na-338.234.518.1
    SF-4.4Na-800P-151.324.57.3ZY-4.4Na-800P-110.341.623.8
    SF-4.4Na-800P-225.325.632.3ZY-4.4Na-800P-218.34.612.9
    SF-4.4Na-800P-37.53.98.1ZY-4.4Na-800P-37.843.225.2
    SF-raw-6.6Na-128.627.630.5ZY-raw-6.6Na-130.741.65.7
    SF-raw-6.6Na-232.524.820.7ZY-raw-6.6Na-230.619.520.3
    SF-raw-6.6Na-328.013.717.9ZY-raw-6.6Na-335.717.319.6
    SF-6.6Na-800P-16.95.420.5ZY-6.6Na-800P-111.530.524.9
    SF-6.6Na-800P-214.513.86.7ZY-6.6Na-800P-216.826.820.6
    SF-6.6Na-800P-320.728.912.6ZY-6.6Na-800P-319.530.816.9
    note: SF-raw-4.4Na-1 is the surface area of 1# in SF-raw-4.4Na
    下载: 导出CSV

    表  4  氮气吸附法测定的样品孔结构参数

    Table  4  Pore structure parameters of samples measured by N2 gas adsorption analysis

    Sample ABET
    /(m2·g-1)
    Pore volume
    v/ (cm3·g-1)
    SF-raw-800P2.20700.0014
    SF-4.4Na-800P17.23300.0195
    SF-6.6Na-800P2.90110.0064
    ZY-raw-800P1.68450.0052
    ZY-4.4Na-800P1.88910.0076
    ZY-6.6Na-800P1.76650.0067
    下载: 导出CSV

    表  5  煤/煤焦的水溶性和离子交换型钠元素含量

    Table  5  Water-soluble and ion-exchanged Na contents in coal/char

    Coal/charActual loading of
    sodium w/%
    Theoretical loading of
    sodium w/%
    SF-raw-2.2Na1.92.2
    SF-raw-4.4Na4.34.4
    SF-raw-6.6Na6.36.6
    SF-2.2Na-800P1.32.2
    SF-4.4Na-800P3.74.4
    SF-6.6Na-800P5.76.6
    ZY-raw-2.2Na2.12.2
    ZY-raw-4.4Na4.34.4
    ZY-raw-6.6Na6.46.6
    ZY-2.2Na-800P1.12.2
    ZY-4.4Na-800P2.14.4
    ZY-6.6Na-800P4.36.6
    下载: 导出CSV

    表  6  神府和遵义样品的动力学参数

    Table  6  Kinetic parameters of SF and ZY samples

    Sample Ea/(kJ·mol-1)lnA
    SF-2.2Na-800P-CO2142.814.5623
    SF-4.4Na-800P-CO2106.110.4127
    SF-6.6Na-800P-CO2120.312.7232
    ZY-2.2Na-800P-CO2150.115.4361
    ZY-4.4Na-800P-CO2133.111.9361
    ZY-6.6Na-800P-CO2104.77.4310
    SF-2.2Na-800P-H2O126.312.7423
    SF-4.4Na-800P-H2O111.211.5243
    SF-6.6Na-800P-H2O95.39.4760
    ZY-2.2Na-800P-H2O121.212.4653
    ZY-4.4Na-800P-H2O102.310.7434
    ZY-6.6Na-800P-H2O86.48.5263
    下载: 导出CSV
  • [1] 李珊.煤催化气化催化剂发展现状及研究展望[J].化学工业与工程技术, 2013, 34(5):10-15. http://www.cnki.com.cn/Article/CJFDTOTAL-HXGJ201305003.htm

    LI Shan.Developing status and research prospect of catalysts for coal catalytic gasification[J].J Chem Ind Eng, 2013, 34(5):10-15. http://www.cnki.com.cn/Article/CJFDTOTAL-HXGJ201305003.htm
    [2] 高旭霞, 郭晓镭, 龚欣.气流床煤气化渣的特征[J].华东理工大学学报 (自然科学版), 2009, 35(5):677-683. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX200905004.htm

    GAO Xu-xia, GUO Xiao-lei, GONG Xin.Characterization of slag from entrained-flow coal gasification[J].J East China Univ Sci Technol (Nat Sci Ed), 2009, 35(5):677-683. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX200905004.htm
    [3] 孟磊, 周敏, 王芬.煤催化气化催化剂研究进展[J].煤气与热力, 2010, 30(4):B18-B22. http://www.cnki.com.cn/Article/CJFDTOTAL-MQRL201004029.htm

    MENG Lei, ZHOU Min, WANG Fen.Progress of research on catalyst for catalytic gasification of coal[J].Gas Heat, 2010, 30(4):B18-B22. http://www.cnki.com.cn/Article/CJFDTOTAL-MQRL201004029.htm
    [4] POPA T, FAN M H, ARGYLE M D, SLIMANE R B, BELL D A, TOWLER B F.Catalytic gasification of a Powder River Basin coal[J].Fuel, 2013, 103:161-170. doi: 10.1016/j.fuel.2012.08.049
    [5] MONTERROSO R, FAN M H, ZHANG F, GAO Y, POPA T, ARGYLE M D, TOELER B, SUN Q Y.Effects of an environmentally-friendly, inexpensive composite iron-sodium catalyst on coal gasification[J].Fuel, 2014, 116:341-349. doi: 10.1016/j.fuel.2013.08.003
    [6] KARIMI A, GRAY M R.Effectiveness and mobility of catalysts for gasification of bitumen coke[J].Fuel, 2011, 90(1):120-125. doi: 10.1016/j.fuel.2010.07.032
    [7] WANG Y, WANG Z, HUANG J, FANG Y.Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J].Energy Fuels, 2015, 29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537
    [8] 陈彦, 张济宇.Na2CO3催化剂对福建高变质无烟煤比表面及气化反应特性的影响[J].化工学报, 2011, 62(10):2768-2775.

    CHEN Yan, ZHANG Ji-yu.Effects of catalyst loading of Na2CO3 on specific surface area and gasification characteristics of Fujian high-metamorphous anthracite[J].CIESC J, 2011, 62(10):2768-2775.
    [9] SAMS D A, SHADMAN F.Catalytic effect of potassium on the rate of char-CO2 gasification[J].Fuel, 1983, 62(8):880-882. doi: 10.1016/0016-2361(83)90153-9
    [10] 陈彦, 张济宇.福建无烟煤Na2CO3催化气化过程的比表面变化特性[J].化工学报, 2012, 63(8):2443-2452.

    CHEN Yan, ZHANG Ji-yu.Variation of specific surface area in catalytic gasification process of Fujian anthracite with Na2CO3 catalyst[J].CIESC J, 2012, 63(8):2443-2452.
    [11] 王西明, 王兴军, 陈凡敏, 刘海峰, 于广锁, 王辅臣.水蒸气气氛煤中温催化气化动力学研究[J].燃料化学学报, 2013, 41(10):1166-1172. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18270.shtml

    WANG Xi-ming, WANG Xing-jun, CHEN Fan-min, LIU Hai-feng, YU Guang-suo, WANG Fu-chen.Catalytic gasification kinetics of coal with steam at mid-temperature[J].J Fuel Chem Technol, 2013, 41(10):1166-1172. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18270.shtml
    [12] PANETH H R.The mechanism of self-diffusion in alkali metals[J].Phys Rev, 1950, 80(4):708-711. doi: 10.1103/PhysRev.80.708
    [13] GODAVARTY A, AGARWAL A.Distribution and catalytic activity of eutectic salts in steam gasification of coal[J].Energy Fuels, 2000, 14(3):558-565. doi: 10.1021/ef990156o
    [14] WEI X F, HUANG J J, LIU T F, FANG Y T, WANG Y.Transformation of alkali metals during pyrolysis and gasification of a lignite[J].Energy Fuels, 2008, 22(3):1840-1844. doi: 10.1021/ef7007858
    [15] 康守国.K2CO3催化煤焦-水蒸气气化的研究[D].天津:河北工业大学, 2011.

    KANG Shou-guo.Study on catalytic gasification reactivity of coal char supported with K2CO3[D].Tianjin:Hebei University of Technology, 2011.
    [16] GIL M V, RIAZA J, ÁLVAREZ L, PEVIDA C, RUBIERA F.Biomass devolatilization at high temperature under N2 and CO2:Char morphology and reactivity[J].Energy, 2015, 91:655-662. doi: 10.1016/j.energy.2015.08.074
    [17] LIU H, LUO C, KANEKO M, KATO S, KOJIMA T.Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model[J].Energy Fuels, 2003, 17(4):961-97. doi: 10.1021/ef020231m
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  63
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-23
  • 修回日期:  2016-10-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-12-10

目录

    /

    返回文章
    返回