留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoO3/Al-SBA-15改性催化剂及其在煤焦油加氢裂化中的应用

黄澎 刘敏 常秋连

黄澎, 刘敏, 常秋连. MoO3/Al-SBA-15改性催化剂及其在煤焦油加氢裂化中的应用[J]. 燃料化学学报(中英文), 2020, 48(9): 1079-1086.
引用本文: 黄澎, 刘敏, 常秋连. MoO3/Al-SBA-15改性催化剂及其在煤焦油加氢裂化中的应用[J]. 燃料化学学报(中英文), 2020, 48(9): 1079-1086.
HUANG Peng, LIU Min, CHANG Qiu-lian. MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1079-1086.
Citation: HUANG Peng, LIU Min, CHANG Qiu-lian. MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1079-1086.

MoO3/Al-SBA-15改性催化剂及其在煤焦油加氢裂化中的应用

基金项目: 

国家重点研发计划 2017YFB0602803

北京市自然科学基金资助 2182090

详细信息
    通讯作者:

    黄澎, Tel:010-84262941, E-mail:squallok@qq.com

  • 中图分类号: TQ536

MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking

Funds: 

The project was supported by the National Key Research and Development Project 2017YFB0602803

the Natural Science Foundation of Beijing 2182090

More Information
    Corresponding author: HUANG Peng, Tel:010-84262941, E-mail:squallok@qq.com
  • 摘要: 利用蒸发诱导法制备了HCl改性的MoO3/Al-SBA-15系列催化剂,采用XRD、BET、TEM、NH3-TPD进行了表征。结果表明,改性后的催化剂保留着SBA-15的六角结构,孔道结构保持有序状态,改性后样品的孔径8 nm左右,壁厚4 nm左右,属于典型的介孔分子筛,活性组分在载体中分布良好。以预加氢后的中低温煤焦油为原料,采用固定床加氢裂化对催化剂进行了评价,结果表明,经过预硫化之后,负载了MoO3的Al-SBA-15具有良好的加氢裂化活性,MoO3负载量14.9%的情况下,65-145℃石脑油和145-280℃航煤馏分两种较轻组分合计收率为79.21%,其中,石脑油具备很高的芳潜值,最高可达72.4,是优良的重整制取芳烃的原料,裂化后的尾油BMCI值过高,不适宜作为裂化乙烯的原料。
  • 图  1  固定床加氢裂化流程示意图

    Figure  1  Flowchart of the hydrocracking process

    1: H2 compressor; 2: raw material tank; 3: water tank; 4: flowmeter; 5: feed pump; 6: water pump; 7: pre-hydrorefining reactor; 8: hydrocracking reactor; 9: separator; 10: pruduct oil; 11: caustic tank; 12: wet gas flowmeter

    图  2  催化剂预硫化升温曲线

    Figure  2  Temperature rise curve of the catalyst prevulcanization

    图  3  催化剂样品的低角XRD谱图

    Figure  3  Low-angle XRD patterns of the catalysts

    1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)

    图  4  催化剂样品的高角XRD谱图

    Figure  4  Wide-angle XRD patterns of the catalysts

    1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)

    图  5  催化剂的N2吸附-脱附等温线

    Figure  5  Nitrogen adsorption-desorption isotherms of the catalysts

    1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)

    图  6  催化剂的孔径分布

    Figure  6  Pore size distributions of the catalysts

    1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)

    图  7  催化剂样品的TEM照片

    Figure  7  TEM images of catalysts

    (a): 3#, perpendicular to channels; (b): 3#, parallel to channels; (c): 4#, perpendicular to channels; (d): 4#, parallel to channels

    图  8  催化剂的NH3-TPD谱图

    Figure  8  NH3-TPD profiles of the catalysts

    1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)

    表  1  MoO3/Al-SBA-15样品一览表

    Table  1  Elements contents of MoO3/Al-SBA-15 samples

    Sample Si/Mo (mol ratio) Al/Mo (mol ratio) MoO3 w/% Mow/%
    1# - - 0 0
    2# 43.5 2.18 5.1 3.4
    3# 22.4 1.12 9.9 6.5
    4# 14.9 0.75 14.9 9.8
    5# 11.0 0.55 20.1 13.3
    下载: 导出CSV

    表  2  煤焦油预加氢油性质

    Table  2  Properties of the coal tar after pre-hydrogenation

    Elemental analysis ρ20c/ (kg· m-3) Hydrocarbon group composition w/%
    Hw/% Cw/% Oaw/% Sb/(mg·kg-1) Nb/(mg·kg-1) alkane naphthene aromatics polar fraction
    monocyclic bicyclic tricyclic
    10.73 88.32 0.86 349 557 0.9751 24.9 28.68 22.83 16.29 5.15 2.13
    Fraction distribution
    v/% IBP 5 10 20 30 40 50 60 70 80 90 99.5
    t/℃ 97.2 158.4 181.3 241.2 270.6 283.6 318.6 328.3 350.1 370.2 388.8 423.1
    a: by difference; b: detected by micro sulfur and nitrogen analyzer; c: density at 20 ℃
    下载: 导出CSV

    表  3  催化剂样品的孔结构参数

    Table  3  Physico-chemical properties of the catalysts

    Sample MoO3w/% SBETa/(m2·g-1) vPb/(cm3·g-1) d cBJH/nm
    1# 0 854 1.17 7.7
    2# 5.1 434 0.74 6.1
    3# 9.9 335 0.69 5.9
    4# 14.9 295 0.64 5.8
    5# 20.1 99 0.28 4.7
    a:specific surface area determined by Brunauer-Emmett-Teller (BET) method;b:total pore volume recorded at p/p0 = 0.99;c:pore diameter calculated by Barrett-Joyner-Halenda (BJH) method
    下载: 导出CSV

    表  4  加氢裂化物料平衡

    Table  4  Mass balance of hydro-cracking processing

    Sample 1# 2# 3# 4# 5#
    Input w/%
    Coal tar 100 100 100 100 100
    DMDS 0.25 0.25 0.25 0.25 0.25
    H2 4.14 5.07 5.63 5.92 5.31
    Total 104.39 105.32 105.88 106.17 105.56
    Output w/%
    H2S 0.20 0.22 0.22 0.22 0.22
    NH3 0.05 0.06 0.07 0.07 0.06
    CO 0.08 0.07 0.04 0.03 0.04
    CO2 0.05 0.03 0.03 0.02 0.03
    <65℃* 7.49 4.53 4.71 5.07 4.25
    65-145℃ 26.23 40.12 45.28 47.42 40.33
    145-280 ℃ 20.72 25.61 29.59 31.89 33.8
    280-370 ℃ 30.17 20.25 15.89 12.88 14.67
    >370 ℃ 18.31 13.62 9.17 7.67 11.26
    H2O 0.73 0.81 0.88 0.90 0.90
    Total 104.39 105.32 105.88 106.17 105.56
    *:<65 ℃: C1-5
    下载: 导出CSV

    表  5  加氢裂化产物性质

    Table  5  Properties of hydrocracking products

    Sample 1# 2# 3# 4# 5#
    65-145 ℃
    ρ20c/(kg·m-3) 777.9 765.8 758.3 749.4 750.1
    H/C 1.98 2.04 2.07 2.11 2.09
    Aromatic potential 69.4 70.6 72.4 71.1 68.7
    145-280 ℃
    ρ20c/(kg·m-3) 853.2 847.1 843.3 838.5 841.1
    H/C 1.94 1.96 1.97 1.98 2.02
    Freezing point /℃ <-60 <-60 <-60 <-60 <-60
    280-370 ℃
    ρ20c/(kg·m-3) 907.6 905.5 903.2 899.6 901.1
    H/C 1.71 1.77 1.79 1.83 1.82
    Condensation point -33 -39 -42 -43 -46
    Cetane index 41 39 38 37 39
    >370 ℃
    ρ20c/(kg·m-3) 972.3 968.6 965.4 963.8 964.1
    H/C 1.39 1.40 1.43 1.42 1.44
    BMCI 74.4 70.1 68.6 65.7 69.3
    下载: 导出CSV
  • [1] 李立权.加氢裂化装置工艺计算与技术分析[M].北京:中国石化出版社, 2009.

    LI Li-quan. Process Calculation and Technical Analysis of Hydro Cracking Unit[M]. Beijing:China Petrochemical Press, 2009.
    [2] 徐洁, 吴韬, 陈胜利, 袁桂梅.催化柴油加氢裂化生产BTX研究现状[J].工业催化, 2018, 26(2):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gych201802002

    XU Jie, WU Tao, CHEN Sheng-li, YUAN Gui-mei. Research progress of hydrocracking of diesel to produce BTX[J]. Ind Catal, 2018, 26(2):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gych201802002
    [3] PENG C, FANG X C, ZENG R H, GUO R, HAO W Y. Commercial analysis of catalytic hydroprocessing technologies in producing diesel and gasoline by light cycle oil[J]. Catal Today, 2016, 276(1):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e7cce41876587237be592edb75d620c
    [4] HUANG P, ZHANG X J, MAO X F. Research on the production of aromatic hydrocarbon via hydroreforming a light fraction in direct coal liquefaction oil[J]. Energy Fuels, 2015, 29(1):86-90. doi: 10.1021/ef502146a
    [5] HATA Y, HAYASHIZAKI H, TAKAFUMI T, KANEHASHI K. Structural analysis of primary coal Tar by FD-MS[J]. J Iron Steel Inst, 2019, 105(6):601-609. doi: 10.2355/tetsutohagane.TETSU-2018-134
    [6] 黄澎, 李文博, 毛学锋, 马博文.热解重油加氢裂化制取高芳潜石脑油的研究[J].燃料化学学报, 2019, 47(11):1329-1336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201911007

    HUANG Peng, LI Wen-bo, MAO Xue-feng, MA Bo-wen. Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking[J]. J Fuel Chem Technol, 2019, 47(11):1329-1336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201911007
    [7] 王泽洋, 王龙延.煤基燃料油品特性与煤制油产业发展分析[J].化工进展, 2019, 38(7):3079-3088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201907008

    WANG Ze-yang, WANG Long-yan. Analysis on characteristics of coal-based vehicle fuels and development of coal-to-liquids industry[J]. Chem Ind Eng Prog, 2019, 38(7):3079-3088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201907008
    [8] 曹宏伟, 李月婷, 王腾达, 张香文, 李国柱.煤直接液化油制备航空航天燃料的工艺研究[J].含能材料, 2020, (5):376-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl202005006

    CAO Hong-wei, LI Yue-ting, WANG Teng-da, ZHANG Xiang-wen, LI Guo-zhu. Process of upgrading diret coal liquefaction oil to aerospace fuel[J]. Chin J Energ Mater, 2020, (5):376-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl202005006
    [9] INAMURAL K, KAGAMI N, SHIRAKAWA T, EURA S, WATABE M. Improvement in hydrocracking activity of heavy oil upgrading catalyst by modifications to some specific properties of Y-zeolite[J]. Res Chem Intermed, 2015, 41(12):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c32f7dff7c6685724aa5c4d24f21ccc6
    [10] 韩宝斋.加氢裂化催化剂裂化组分Y分子筛改性研究[D].北京: 中国石油大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10425-1019837162.htm

    HAN Bao-zhai. Study on the modification of Y zeolite for hydrocracking catalysts[D]. Beijing: China University of Petroleum, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10425-1019837162.htm
    [11] DIDI D A, LUQMAN B, GIVENI C S, RESTI N U. Preparation, characterization, and activation of Co-Mo/Y zeolite catalyst for coal tar conversion to liquid fuel[J]. Bull Chem React Eng Catal, 2017, 12(2):219-226. doi: 10.9767/bcrec.12.2.768.219-226
    [12] MARAKATTI V S, PETER S C. Nickel-antimony nanoparticles confined in SBA-15 as highly efficient catalysts for the hydrogenation of nitroarenes[J]. New J Chem, 2016, 40(6):5448-5457. doi: 10.1039/C5NJ03479E
    [13] LEI Z P, GAO L J, SHUI H F, CHEN W L, WANG Z C, REN S B. Hydrotreatment of heavy oil from a direct coal liquefaction process on sulfided Ni-W/SBA-15 catalysts[J]. Fuel Process Technol, 2011, 92(10):2055-2060. doi: 10.1016/j.fuproc.2011.06.007
    [14] WANG L, LI J, WANG L, CHU S, YANG L. Synthesis of core-shell HZSM-5@SBA-15 composite and its performance in the conversion of methanol to aromatics[J]. China Pet Process Petrochem Technol, 2018, 20(1):16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201801004
    [15] 盖媛媛, 李海涛, 李建法, 孙瑞霞. Zr-MCM-41与Zr-SBA-15催化剂肉桂醛MPV转移加氢性能[J].工业催化, 2018, 26(12):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gych201812009

    GAI Yuan-yuan, LI Hai-tao, LI Jian-fa, SUN Rui-xia. Catalytic performance of Zr-MCM-41 and Zr-SBA-15 catalysts for cinnamaldehyde MPV transfer hydrogenation[J]. Ind Catal, 2018, 26(12):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gych201812009
    [16] 李祥珍, 王晓钟, 刘瑜, 陈伟, 黄璐.介孔材料Al-SBA-15的合成研究进展[J].化工进展, 2013, 32(7):1555-1563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201307018

    LI Xiang-zhen, WANG Xiao-zhong, LIU Yu, CHEN Wei, HUANG Lu. Research progress in the synthesis of mesoporous Al-SBA-15 material[J]. Chem Ind Eng Prog, 2013, 32(7):1555-1563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201307018
    [17] SAUL P B, PERLA B B, GUSTAVO E, RAMIREZ C. Surface structure and acidity properties of mesoporous silica SBA-15 modified with aluminum and titanium:First-principles calculations[J]. J Phys Chem C, 2016, 120(32):18105-18114. doi: 10.1021/acs.jpcc.6b05630
    [18] LUZ G E, LIMA F C A, NETO C O C, PAZ G L, SILVA E F B, BARBOSA M N. Determination of SBA-15 acidity through n-butyl amine TPD:A theoretical and experimental study[J]. J Mater Sci, 2013, 48(20):6885-6890. doi: 10.1007/s10853-013-7492-5
    [19] 田志茗.介酸改性SBA-15介孔材料制备、表征及催化性能[D].大连: 大连理工大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10141-2009041173.htm

    Tian Zhi-ming. Preparation, characterization and catalytic performance of acid-modified SBA-15 mesoporous materials[D]. Dalian: Dalian University of Technology, 2008. http://cdmd.cnki.com.cn/article/cdmd-10141-2009041173.htm
    [20] 丁志杰, 陈君华, 公旭中, 程年寿.酸的种类及浓度对SBA-15有序介孔分子筛结构与形貌的影响[J].硅酸盐学报, 2008, (7):978-984. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsyxb200807018

    DING Zhi-jie, CHEN Jun-hua, GONG Xu-zhong, CHENG Nian-shou. Effect of different kinds of acid and their concentration on mesostructure and morphology of ordered mesoporous molucular sieve SBA-15[J]. J Chin Silic Soc, 2008, (7):978-984. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsyxb200807018
    [21] 曹正凯, 霍海峰, 吴子明.掺炼催化裂化柴油对加氢裂化产品性质的影响[J].炼油技术与工程, 2018, 48(5):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lysj201805006

    CAO Zheng-kai, HUO Hai-feng, WU Zi-ming. Study on the impact of mixing FCC diesel on the performance of hydrocracking unit[J]. Pet Refin Eng, 2018, 48(5):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lysj201805006
    [22] MARK S, STEPHEN O B, STEPHAN S, GALEN D S. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium[J]. Chem Mater, 2000, 12(4):898-911. doi: 10.1021/cm9901663
    [23] ZHAO D Y FENG J L, HUO Q S, NICHOLAS M, GLENN H, FREDRICKSON, BRADLEY F C, GALEN D S. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350):548-552. doi: 10.1126/science.279.5350.548
    [24] ZHAO D S, HUO Q S, FENG J L, BRADLEY F C, GALEN D S. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120(24):6024-6036. doi: 10.1021/ja974025i
    [25] SRINIVAS D, SRIVASTAVA R, RATNASAMY P. Transesterification over titanosilicate molecular sieves[J]. Catal Today, 2004, 96(3):127-133. doi: 10.1016/j.cattod.2004.06.113
    [26] LIU C H, GAO X H, ZhANG Z D, ZHANG H T, SUN S H, DENG Y Q. Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction[J]. Appl Catal A:Gen, 2004, 264(2):225-228. doi: 10.1016/j.apcata.2003.12.048
    [27] YORI J C, KRASNOGOR L M, CASTRO A A. Correlation between acid Strength(H0) and ammonia desorption temperature for aluminas and silica-aluminas[J]. React Kinet Catal Lett, 1986, 32(1):27-32. doi: 10.1007/BF02063445
    [28] 程俊杰, 李振荣, 赵亮富. Hβ/Al-SBA-15介微孔复合分子筛负载Ni-W催化剂对萘加氢裂化制BTX的催化性能[J].燃料化学学报, 2017, 45(1):93-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201701013

    CHENG Jun-jie, LI Zhen-rong, ZHAO Liang-fu. Catalytic performance of Ni-W supported on micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves in the hydrocracking of naphthalene to BTX[J]. J Fuel Chem Technol, 2017, 45(1):93-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201701013
    [29] LI X P, ZHANG J G, LIU B, LIU J P, WANG C B, CHEN G Y. Hydrodeoxygenation of lignin-derived phenols to produce hydrocarbons over Ni/Al-SBA-15 prepared with different impregnants[J]. Fuel, 2018, 20(1):16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8eb9726acd37d8d8d12322af2813c231
    [30] 王峰.炼油产乙烯裂解原料的优化利用及经济分析[J].当代化工, 2014, (2):243-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddhg201402031

    WANG Feng. Optimization and economic analysis of ethylene cracking feedstock produced in refinery[J]. Contemp Chem Ind, 2014, (2):243-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddhg201402031
    [31] 王汉松.乙烯工艺与技术[M].北京:中国石化出版社, 2012.

    WANG Han-song. Ethylene Process and Technology[M]. Beijing:China Petrochemical Press, 2012.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  172
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-09-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回