留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同前驱物制备的MnOx/TiO2联合O3催化氧化NO性能

刘丽君 沈伯雄 丝梦 张浩浩 苑鹏

刘丽君, 沈伯雄, 丝梦, 张浩浩, 苑鹏. 不同前驱物制备的MnOx/TiO2联合O3催化氧化NO性能[J]. 燃料化学学报(中英文), 2017, 45(5): 624-632.
引用本文: 刘丽君, 沈伯雄, 丝梦, 张浩浩, 苑鹏. 不同前驱物制备的MnOx/TiO2联合O3催化氧化NO性能[J]. 燃料化学学报(中英文), 2017, 45(5): 624-632.
LIU Li-jun, SHEN Bo-xiong, SI Meng, ZHANG Hao-hao, YUAN Peng. Catalytic performance of MnOx/TiO2 prepared with different precursors in the oxidation of NO with O3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 624-632.
Citation: LIU Li-jun, SHEN Bo-xiong, SI Meng, ZHANG Hao-hao, YUAN Peng. Catalytic performance of MnOx/TiO2 prepared with different precursors in the oxidation of NO with O3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 624-632.

不同前驱物制备的MnOx/TiO2联合O3催化氧化NO性能

基金项目: 

国家重点研发计划 2016YFC0209202

河北省自然科学重点基金 E2016202361

详细信息
    通讯作者:

    沈伯雄, Tel: 18622132754, E-mail: shenboxiong0722@sina.com

  • 中图分类号: TQ032.4

Catalytic performance of MnOx/TiO2 prepared with different precursors in the oxidation of NO with O3

Funds: 

the National Research Program of China 2016YFC0209202

National Natural Science Foundation of Hebei Province E2016202361

  • 摘要: 分别以乙酸锰(MnAc)、氯化锰(MnCl2)和硝酸锰(Mn(NO32)为前驱物,采用浸渍法制备MnAc/TiO2、MnCl/TiO2和MnN/TiO2三种催化剂,并采用氮吸附、SEM、H2-TPR、O2-TPD、XRD和XPS进行表征。在固定床反应器上研究了三种催化剂的联合臭氧催化氧化NO性能。结果表明,以乙酸锰为前驱物制备的MnAc/TiO2催化剂联合臭氧催化氧化NO活性最高;MnAc/TiO2催化剂颗粒分散性好,比表面积相对较大,催化剂表面Mn3+较多,因而具有较高的催化活性。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of experimental device for the catalytic oxidation of NO with O3

    图  2  不同温度下前驱物对催化活性的影响

    Figure  2  Effect of manganese precursor on the catalytic activity of MnOx/TiO2 in the oxidation of NO without O3 at different temperatures reaction conditions: 670 mg/m3 NO, 5% O2, balance N2; GHSV = 24 000 h-1

    图  3  不同O3/NO物质的量比下前驱物对NO催化氧化效率的影响

    Figure  3  Effect of manganese precursor on the catalytic activity of MnOx/TiO2 in the oxidation of NO with O3 at different O3/NO ratiosreaction conditions: 670 mg/m3 NO, 5% O2, balance N2; GHSV = 24 000 h-1; 140 ℃

    图  4  不同催化剂与O3联合作用效果比较

    Figure  4  Activity of various MnOx/TiO2 catalysts in the oxidation of NO with O3 at different O3/NO ratios reaction conditions: 670 mg/m3 NO, 5% O2, balance N2; GHSV = 24 000 h-1; 140 ℃

    : O3/NO=0; : O3/NO=0.3; : O3/NO=0.7

    图  5  不同催化剂的SEM照片

    Figure  5  SEM images of MnAc/TiO2 (a), MnN/TiO2 (b) and MnCl/TiO2 (c)

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of various catalysts

    图  7  催化剂的O2-TPD谱图

    Figure  7  O2-TPD profiles of various catalysts

    图  8  催化剂的XRD谱图

    Figure  8  XRD patterns of various catalysts

    ▲: anatase; ■: MnO2; ▼: Mn2O3

    图  9  MnAc/TiO2、MnCl/TiO2和MnN/TiO2催化剂的Mn 2p3/2、O 1s XPS谱图

    Figure  9  Mn 2p3/2 (a) and O 1s (b) XPS spectra of the MnAc/TiO2, MnCl/TiO2 and MnN/TiO2 catalysts

    表  1  催化剂的比表面积

    Table  1  Surface area of the catalysts

    Sample Specific surface area A/(m2·g-1)
    MnCl/TiO2 5.8
    MnN/TiO2 8.7
    MnAc/TiO2 8.9
    下载: 导出CSV

    表  2  催化剂表面Mn、O原子浓度

    Table  2  Concentrations of Mn and O on the catalyst surface

    Sample Mn /% Mn/Ti Mn3+/Mn O 1s /% O/O 1s
    MnAc/TiO2 3.34 0.49 0.64 47.85 0.61
    MnCl/TiO2 1.90 0.27 0.05 47.97 0.75
    MnN/TiO2 2.27 0.33 0.29 44.36 0.44
    下载: 导出CSV

    表  3  Mn 2p3/2和O 1s的结合能及价态

    Table  3  Mn 2p3/2 and O 1s binding energies and valance composition

    Sample Mn 2p3/2 E/eV O 1s E/eV
    Mn3+ Mn4+ Mn7+ ststellite peak O O O O
    MnAc/TiO2 641.7 643.6 - 645.9 529.8 - 532.0 -
    MnCl/TiO2 641.8 644.6 646.2 - - - 533.3 535.9
    MnN/TiO2 641.4 642.5 - 645.4 529.6 530.9 532.2 -
    下载: 导出CSV
  • [1] 姜树栋, 王智化, 周俊虎, 杨卫娟, 岑可法.臭氧氧化烟气脱硝制硝酸的试验研究[J].燃烧科学与技术, 2010, 16(1): 57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201001013.htm

    JIANG Shu-dong, WANG Zhi-hua, ZHOU Jun-hu, YANG Wei-juan, CEN Ke-fa. Experimental study on nitric oxide production from flue gas by ozone oxidation[J]. J Combust Sci Technol, 2010, 16(1): 57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201001013.htm
    [2] SRIVASTAVA R K, NEUFFER W, GRANO D, KHAN S, STAUDT J E, JOZEWICZ W. Controlling NOx emission from industrial sources[J]. Environ Prog, 2005, 24(2): 181-197. doi: 10.1002/(ISSN)1547-5921
    [3] 王智化, 周俊虎, 魏林生, 温正城, 岑可法.用臭氧氧化技术同时脱除锅炉烟气中NOx及SO2的试验研究[J].中国电机工程学报, 2007, 27(11): 1-5. doi: 10.3321/j.issn:0258-8013.2007.11.001

    WANG Zhi-hua, ZHOU Jun-hu, WEI Lin-sheng, WEN Zheng-cheng, CEN Ke-fa. Experimental study on simultaneous removal of NOx and SO2 in flue gas by ozone oxidation[J]. Proc CSEE, 2007, 27(11): 1-5. doi: 10.3321/j.issn:0258-8013.2007.11.001
    [4] SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement: A review[J]. Sci Total Environ, 2010, 408(19): 3976-3989. doi: 10.1016/j.scitotenv.2010.06.001
    [5] LIU Y X, ZHOU J F, ZHANG Y C, PAN J F, WANG Q, ZHANG J. Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor[J]. Fuel, 2015, 145(1): 180-188. doi: 10.1016/j.fuel.2014.12.084
    [6] LIU Y X, ZHANG J, SHENG C D, ZHANG Y C, ZHAO L. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chem Eng J, 2010, 162(3): 1006-1011. doi: 10.1016/j.cej.2010.07.009
    [7] ZHAO Y, WEN X Y, GUO T X, ZHOU J H. Desulfurization and denitrogenation from flue gas using Fenton reagent[J]. Fuel Process Technol, 2014, 128(3): 54-60. https://www.researchgate.net/publication/264560061_Desulfurization_and_denitrogenation_from_flue_gas_using_Fenton_reagent
    [8] 赵海谦, 高继慧, 周伟, 王忠华, 吴少华. Fe2+/H2O2体系内各种自由基在氧化NO中的作用[J].化工学报, 2015, 66(1): 449-454. doi: 10.11949/j.issn.0438-1157.20140976

    ZHAO Hai-qian, GAO Ji-hui, ZHOU Wei, WANG Zhong-hua, WU Shao-hua. The role of various free radicals in the oxidation of NO in Fe2+/H2O2 system[J]. J Chem Ind Eng, 2015, 66(1): 449-454. doi: 10.11949/j.issn.0438-1157.20140976
    [9] WANG Z H, LI B, EHN A, SUN ZW, LI Z S, BOOD J, ALDEN M, CEN K F. Investigation of flue-gas treatment with O3, injection using NO and NO2, planar laser-induced fluorescence[J]. Fuel, 2010, 89(9): 2346-2352. doi: 10.1016/j.fuel.2010.03.013
    [10] SUN W Y, DING S L, ZENG S S. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone[J]. J Hazard Mater, 2011, 192(1): 124-130. http://www.doc88.com/p-312907023770.html
    [11] WU Z, TANG N, XIAO L, LIU Y, WANG H C. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation[J]. J Colloid Interface Sci, 2010, 352(1): 143-148. doi: 10.1016/j.jcis.2010.08.031
    [12] FU Y, DIWEKAR U M. Cost effective environmental control technology for utilities[J]. Adv Environ Res, 2004, 8(2): 173-196. doi: 10.1016/S1093-0191(02)00129-6
    [13] WANG Z, LIN F W, JIANG S D, QIU K Z, KUANG M, WHIDDON R, CEN K F. Ceria substrate-oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2[J]. Fuel, 2016, 166: 352-360. doi: 10.1016/j.fuel.2015.11.012
    [14] FARIA P C C, ORFAO J J M, PEREIRA M F R. Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents[J]. Appl Catal B: Environ, 2009, 88(3/4): 341-350. https://www.researchgate.net/publication/257370723_Activated_Carbon_and_Ceria_Catalysts_Applied_to_the_Catalytic_Ozonation_of_Dyes_and_Textile_Effluents
    [15] JÕGI I, ERME K, RAUD J, LAAN M. Oxidation of NO by ozone in the presence of TiO2 catalyst[J]. Fuel, 2016, 173: 45-51. doi: 10.1016/j.fuel.2016.01.039
    [16] LIN F, WANG Z H, MA Q, CEN K F. Catalytic deep oxidation of NO by ozone over MnOx loaded sphericalalumina catalyst[J]. Appl Catal B: Environ, 2016, 198: 100-111. doi: 10.1016/j.apcatb.2016.05.058
    [17] PARK E, CHIN S, JEONG J, JUMG J. Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species[J]. Microporous Mesoporous Mater, 2012, 163(22): 96-101. doi: 10.1016/j.micromeso.2012.07.009
    [18] 程俊楠, 张先龙, 杨保俊, 吴雪平, 张恒建, 张连凤.催化氧化NO催化剂Mn/ZrO2的制备与性能研究[J].环境科学学报, 2014, 34(3): 620-629. http://www.cnki.com.cn/Article/CJFDTotal-HJXX201403011.htm

    CHENG Jun-nan, ZHANG Xian-long, YANG Bao-jun, WU Xue-ping, ZHANG Heng-jian, ZHANG Lian-feng. Preparation and properties of NO catalyst for catalytic oxidation of Mn/ZrO2[J]. Acta Sci Circumstantiae, 2014, 34(3): 620-629. http://www.cnki.com.cn/Article/CJFDTotal-HJXX201403011.htm
    [19] ATRIBAK I, BUENO-LÓPEZ A, GARCÍA-GARCÍA A, NAVARRO P, FRIAS D, MONTES M. Catalytic activity for soot combustion of birnessite and cryptomelane[J]. Appl Catal B: Environ, 2010, 93(3/4): 267-273. http://www.academia.edu/28956730/Catalytic_activity_for_soot_combustion_of_birnessite_and_cryptomelane
    [20] LI J, LI L, CHENG W, WU F, LU X F, LI Z P. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide[J]. Chem Eng J, 2014, 244(1): 59-67. https://www.researchgate.net/publication/260114306_Controlled_synthesis_of_diverse_manganese_oxide-based_catalysts_for_complete_oxidation_of_toluene_and_carbon_monoxide
    [21] YUNG M M, HOLMGREEN E M, OZKAN U S. Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide[J]. J Catal, 2007, 247(2): 356-367. doi: 10.1016/j.jcat.2007.02.020
    [22] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2, supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B: Environ, 2007, 76(1/2): 123-134. doi: 10.1016/j.apcatb.2007.05.010
    [23] 安忠义. 用于NO氧化的Mn/TiO2催化剂的开发及其性能研究[D]. 北京: 清华大学, 2013.

    AN Zhong-yi. Development and properties of Mn/TiO2 catalysts for NO oxidation[D]. Beijing: Tsinghua University, 2013.
    [24] LI J, CHEN J, KE R, LUO C K, HAO J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catal Commun, 2007, 8(12): 1896-1900. doi: 10.1016/j.catcom.2007.03.007
    [25] CIMINO A, INDOVINA V. Catalytic activity of Mn3+and Mn4+, ions dispersed in MgO for CO oxidation[J]. J Catal, 1974, 33(3): 493-496. doi: 10.1016/0021-9517(74)90296-6
    [26] 唐念. Mn/TiO2催化氧化NO联合CaSO3浆液吸收的烟气脱硝新工艺研究[D]. 浙江: 浙江大学, 2011.

    TANG Nian. Study on the new technology of Mn/TiO2 catalytic oxidation of NO combined with CaSO3 slurry for flue gas denitrification[D]. Zhejiang: Zhejiang University, 2011.
    [27] REZAEI E, SOLTAN J. Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts[J]. Chem Eng J, 2012, 198-199: 482-490. doi: 10.1016/j.cej.2012.06.016
    [28] LIANG S H, TENG F T G, BULGAN G, ZONG R L, ZHU Y F. Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation[J]. J Phys Chem C, 2008, 112(14): 5307-5315. doi: 10.1021/jp0774995
    [29] AN Z Y, ZHUO Y Q, XU C, CHEN C H. Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation[J]. Chin J Catal, 2014, 35(1): 120-126. doi: 10.1016/S1872-2067(12)60726-8
    [30] MORALES M R, BARBERO B P, CAD'US L E. Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts[J]. Appl Catal B: Environ, 2007, 74(1): 1-10. doi: 10.1016/j.apcatb.2007.01.008
    [31] ZHANG Y G, QIN Z F, WANG G F, ZHU H Q, DONG M, LI S N, WU Z W, LI Z K, WU Z H, ZHANG J, HU T D, FAN W B, WANG J G. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B: Environ, 2013, 129(2): 172-181. doi: 10.1016/j.apcatb.2012.09.021
    [32] LU X N, SONG C Y, JIA S H, TONG Z S, TANG X L, TENG Y X. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chem Eng J, 2015, 260(1): 776-784. doi: 10.1016/j.cej.2014.09.058
    [33] JEONG H K, SUNG H P, JEON J K, KIM S S, KIM S C, KIM J M, CHANG D, PARK Y K. Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction[J]. Catal Today, 2012, 185(1): 290-295. doi: 10.1016/j.cattod.2011.08.007
    [34] 安忠义, 禚玉群, 陈昌和.煅烧温度对Mn/TiO2催化剂催化NO氧化活性的影响[J].燃料化学学报, 2014, 42(3): 370-376. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18381.shtml

    AN Zhong-yi, XIANG Yu-qun, CHEN Chang-he. Effect of calcination temperature on catalytic activity of Mn/TiO2 catalyst for NO oxidation[J]. J Fuel Chem Technol, 2014, 42(3): 370-376. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18381.shtml
    [35] PEÑA D A, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: Ⅰ. Evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431. doi: 10.1016/j.jcat.2003.09.003
    [36] ZHANG S B, ZHAO Y C, WANG Z H, ZHANG J Y, WANG L L, ZHENG C Z. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci, 2016, Available online.
    [37] SANTOS V P, PEREIRA M F R, ÓRFÃO J J M, FIGUEIREDO J L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Appl Catal B: Environ, 2010, 99(1/2): 353-363. https://www.researchgate.net/publication/257370750_The_role_of_lattice_oxygen_on_the_activity_of_manganese_oxides_towards_the_oxidation_of_volatile_organic_compounds
    [38] KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269. doi: 10.1016/j.apcata.2007.05.024
    [39] CARJA G, KAMESHIMA Y, OKADA K, MADHUSOODANA C D. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Appl Catal B: Environ, 2007, 73(1/2): 60-64. http://www.wenkuxiazai.com/doc/0cf5dd2b6529647d2628529a-2.html
    [40] KOEL B E, PRALINE G, LEE H I, WHITE J M. X-Ray photoelectron study of the reaction of water with cerium[J]. J Electron Spectrosc Relat Phenom, 1980, 21(1): 31-46. doi: 10.1016/0368-2048(80)85035-3
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-03-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回