留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体效应对Ru催化剂F-T反应性能的影响

程春园 刘粟侥 吴宝山

程春园, 刘粟侥, 吴宝山. 载体效应对Ru催化剂F-T反应性能的影响[J]. 燃料化学学报(中英文), 2017, 45(5): 556-563.
引用本文: 程春园, 刘粟侥, 吴宝山. 载体效应对Ru催化剂F-T反应性能的影响[J]. 燃料化学学报(中英文), 2017, 45(5): 556-563.
CHENG Chun-yuan, LIU Su-yao, WU Bao-shan. Support effects on ruthenium catalyst for the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 556-563.
Citation: CHENG Chun-yuan, LIU Su-yao, WU Bao-shan. Support effects on ruthenium catalyst for the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 556-563.

载体效应对Ru催化剂F-T反应性能的影响

基金项目: 

国家自然科学基金 21473229

详细信息
    通讯作者:

    吴宝山, Tel: 0086-010-69667779, E-mail: wbs@sxicc.ac.cn

  • 中图分类号: O643.36

Support effects on ruthenium catalyst for the Fischer-Tropsch synthesis

Funds: 

National Natural Science Foundation of China 21473229

  • 摘要: 采用浸渍法将Ru负载于SiO2、Al2O3和Beta分子筛制备了不同载体的Ru基F-T合成催化剂。通过N2-物理吸附、XRD、NH3-TPD、H2-TPR、H2-TPD、XPS和CO-DRIFTS等表征方法对不同催化剂的织构、物相、酸性、还原性质、吸附性能和电子状态信息进行了考察,并对不同载体催化剂的F-T反应性能及产物分布进行了研究。结果表明,不同载体Ru基催化剂在金属分散度、还原性质、对氢气吸附性能和电子状态等方面均存在较大差异。其中,酸性较弱的Ru/SiO2催化剂具有较弱的金属载体相互作用、较小的颗粒粒径和较高的电子密度,同时该催化剂的Ru金属平台位点较多,导致其在F-T反应过程中表现较好的反应稳定性,其产物以重质烃为主,CH4和轻质烃选择性较低。
  • 图  1  不同载体和还原前后催化剂的XRD谱图

    Figure  1  XRD patterns of different support (a) and (un) reduced ((b), (c)) catalysts

    图  2  不同催化剂的NH3-TPD谱图

    Figure  2  NH3-TPD profiles of the catalysts with different supports

    图  3  不同催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the catalysts with different supports

    图  4  不同催化剂的H2-TPD谱图

    Figure  4  H2-TPD profiles of the catalysts with different supports

    图  5  不同催化剂的TEM照片

    Figure  5  TEM images of the catalysts

    (a): Ru/Beta; (b): Ru/Al; (c): Ru/Si

    图  6  不同催化剂还原后的XPS谱图

    Figure  6  XPS spectra of the reduced catalysts with different supports

    图  7  不同催化剂的CO-DRIFTS谱图

    Figure  7  CO-DRIFTS spectra of different catalysts

    图  8  不同催化剂上TOF随反应时间的变化

    Figure  8  Evolution of TOF with time on steam of different catalysts

    表  1  不同载体及其相应催化剂的理化性质

    Table  1  Physicochemical properties of the support and Ru-loading catalysts

    Catalyst Metal contenta w/% BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) H2 pulse
    dispersion/% particle size d/ nm
    Ru/Beta 0.97 398(402b) 0.34(0.37) 10.5 12.8
    Ru/Al 0.98 162(166) 0.47(0.47) 11.8 11.4
    Ru/Si 1.03 218(222) 0.70(0.74) 17.8 7.6
    a: Ru content was determined by ICP-OES
    b: physicochemical properties of different supports
    下载: 导出CSV

    表  2  Ru负载催化剂在相同TOF下的选择性

    Table  2  Selectivity of the supported Ru catalysts at the same TOF

    Catalyst TOFa/h-1 CO conversion x% CO2 selectivity smol/% HC selectivity s/%
    C1 C2-2 C5-11 C12+
    Ru/Beta 239.5 9.0 1.4 13.1 22.5 38.6 25.8
    Ru/Al 236.4 11.3 0.9 9.0 13.4 31.2 46.4
    Ru/Si 242.7 13.8 6.4 7.8 12.9 27.5 51.8
    a: based on H2 chemisorption result
    下载: 导出CSV
  • [1] HAMELINCK C, FAAIJ A, DENUIL H, BOERRIGTER H. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential[J]. Energy, 2004, 29(11): 1743-1771. doi: 10.1016/j.energy.2004.01.002
    [2] DRY M E. Fischer-Tropsch reactions and the environment[J]. Appl Catal A: Gen, 1999, 189(2): 185-190. doi: 10.1016/S0926-860X(99)00275-6
    [3] SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 1999, 186(1/2): 3-12. http://www.sciencedirect.com/science/article/pii/S0926860X9900160X
    [4] CLAEYS M, VAN STEEN E. On the effect of water during Fischer-Tropsch synthesis with a ruthenium catalyst[J]. Catal Today, 2002, 71(3/4): 419-427. http://www.sciencedirect.com/science/article/pii/S0920586101004692
    [5] BOUDART M, MCDONALD M A. Structure sensitivity of hydrocarbon synthesis from CO and H2[J]. J Phys Chem, 1984, 88(11): 2185-2195. doi: 10.1021/j150655a004
    [6] KING D. A Fischer-Tropsch study of supported ruthenium catalysts[J]. J Catal, 1978, 51(3): 386-397. doi: 10.1016/0021-9517(78)90277-4
    [7] STOOP F, VERBIEST A M G, VAN DER WIELE K. The influence of the support on the catalytic properties of Ru catalysts in the CO hydrogenation[J]. Appl Catal, 1986, 25(1/2): 51-57. http://www.sciencedirect.com/science/article/pii/S016698340081221X
    [8] IGLESIA E. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137(1): 212-224. doi: 10.1016/0021-9517(92)90150-G
    [9] JOSEFINA P-Z M, MURIEL D, YANN H, ANNE G, LUCIEN L, GINETTE L, MIREYA G, LUISA C M, GEOFFREY B. Characterization and reactivity of Ru/single oxides catalysts for the syngas reaction[J]. Appl Catal A: Gen, 2004, 274(1-2): 295-301. doi: 10.1016/j.apcata.2004.07.013
    [10] 王野, 成康, 张庆红.一氧化碳加氢制碳氢化合物反应选择性的调控[J].中国科学:化学, 2012, 42(4): 363-375. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201204001.htm

    WANG Ye, CHENG Kang, ZHANG Qing-hong. Selectivity tuning for the hydrogenation of carbon monoxide into hydrocarbons[J]. Sci China Chem, 2012, 42(4): 363-375. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201204001.htm
    [11] 王自庆, 张留明, 林建新, 王榕, 魏可镁.纳米材料负载钌催化剂的制备与应用[J].催化学报, 2012, 33(3): 377-388. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201203002.htm

    WANG Zi-qing, ZHANG Liu-ming, LIN Jian-xin, WANG Rong, WEI Ke-mei. Preparation and application of nanometer materials supported ruthenium catalysts[J]. Chin J Catal, 2012, 33(3): 377-388. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201203002.htm
    [12] 李波, 邵玲玲.氧化铝、氢氧化铝的XRD鉴定[J].无机盐工业, 2008, 40(2): 54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200802025.htm

    LI Bo, SHAO Ling-ling. Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorg Chem Ind, 2008, 40(2): 54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200802025.htm
    [13] CHENG K, KANG J, HUANG S, YOU Z, ZHANG Q, DING J, HUA W, LOU Y, DENG W, WANG Y. Mesoporous Beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5-C11 isoparaffins[J]. ACS Catal, 2012, 2(3): 441-449. doi: 10.1021/cs200670j
    [14] CHEN L, LI Y, ZHANG X, ZHANG Q, WANG T, MA L. Mechanistic insights into the effects of support on the reaction pathway for aqueous-phase hydrogenation of carboxylic acid over the supported Ru catalysts[J]. Appl Catal A: Gen, 2014, 478: 117-128. doi: 10.1016/j.apcata.2014.03.038
    [15] SUN J, LI X, TAGUCHI A, ABE T, NIU W, LU P, YONEYAMA Y, TSUBAKI N. Highly-dispersed metallic Ru nanoparticles sputtered on H-Beta zeolite for directly converting syngas to middle isoparaffins[J]. ACS Catal, 2014, 4(1): 1-8. doi: 10.1021/cs4008842
    [16] HOSOKAWA S, NOGAWA S, TANIGUCHI M, UTANI K, KANAI H, IMAMURA S. Oxidation characteristics of Ru/CeO2 catalyst[J]. Appl Catal A: Gen, 2005, 288(1/2): 67-73. http://www.sciencedirect.com/science/article/pii/S0926860X05003170
    [17] FU X, YU H, PENG F, WANG H, QIAN Y. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance[J]. Appl Catal A: Gen, 2007, 321(2): 190-197. doi: 10.1016/j.apcata.2007.02.002
    [18] NIU T, LIU G L, LIU Y. Preparation of Ru/graphene-meso-macroporous SiO2 composite and their application to the preferential oxidation of CO in H2-rich gases[J]. Appl Catal B: Environ, 2014, 154: 82-92. http://www.sciencedirect.com/science/article/pii/S0926337314000873
    [19] CHEN L, ZHU Y, ZHENG H, ZHANG C, ZHANG B, LI Y. Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts[J]. J Mol Catal A: Chem, 2011, 351: 217-227. doi: 10.1016/j.molcata.2011.10.015
    [20] BERNAS A, KUMAR N, LAUKKANEN P, VÄYRYNEN J, SALMI T, MURZIN D Y. Influence of ruthenium precursor on catalytic activity of Ru/Al2O3 catalyst in selective isomerization of linoleic acid to cis-9, trans-11-and trans-10, cis-12-conjugated linoleic acid[J]. Appl Catal A: Gen, 2004, 267(1/2): 121-133. http://www.sciencedirect.com/science/article/pii/S0926860X04001577
    [21] LIN H Y, CHEN Y W. The kinetics of H2 adsorption on supported ruthenium catalysts[J]. Thermochim Acta, 2004, 419(1/2): 283-290.
    [22] MARTÍNEZ-PRIETO L M, CARENCO S, WU C H, BONNEFILLE E, AXNANDA S, LIU Z, FAZZINI P F, PHILIPPOT K, SALMERON M, CHAUDRET B. Organometallic ruthenium nanoparticles as model catalysts for CO hydrogenation: A nuclear magnetic resonance and ambient-pressure X-ray photoelectron spectroscopy study[J]. ACS Catal, 2014, 4(9): 3160-3168. doi: 10.1021/cs5010536
    [23] CHIN S Y, WILLIAMS C T, AMIRIDIS M D. FTIR studies of CO adsorption on Al2O3 and SiO2 supported Ru catalysts[J]. J Phys Chem B, 2006, 110(2): 871-82. doi: 10.1021/jp053908q
    [24] ELMASIDES C, KONDARIDES D I, GRVNERT W, VERYKIOS X E. XPS and FT-IR Study of Ru/Al2O3 and Ru/TiO2 catalysts: Reduction characteristics and interaction with a methane-oxygen mixture[J]. J Phys Chem B, 1999, 103(25): 5227-5239. doi: 10.1021/jp9842291
    [25] LIUZZI D, PÉREZ-ALONSO F J, GARCÍA-GARCÍA F J, CALLE-VALLEJO F, FIERRO J L G, ROJAS S. Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer-Tropsch synthesis on ruthenium based catalysts[J]. Catal Sci Technol, 2016, 6(17): 6495-6503. doi: 10.1039/C6CY00476H
    [26] VAN SANTEN R A, GHOURI M M, SHETTY S, HENSEN E M H. Structure sensitivity of the Fischer-Tropsch reaction; molecular kinetics simulations[J]. Catal Sci Technol, 2011, 1(6): 891-911. doi: 10.1039/c1cy00118c
    [27] SHETTY S, JANSEN A P, VAN SANTEN R A. Direct versus hydrogen-assisted CO dissociation[J]. J Am Chem Soc, 2009, 131(36): 12874-5. doi: 10.1021/ja9044482
    [28] TISON Y, NIELSEN K, MOWBRAY D J, BECH L, HOLSE C, CALLE-VALLEJO F, ANDERSEN K, MORTENSEN J J, JACOBSEN K W, NIELSEN J H. Scanning tunneling microscopy evidence for the dissociation of carbon monoxide on ruthenium steps[J]. J Phys Chem C, 2012, 116(27): 14350-14359. doi: 10.1021/jp302424g
    [29] GONZÁLEZ-CARBALLO J M, PÉREZ-ALONSO F J, OJEDA M, GARCÍA-GARCÍA F J, FIERRO J L G, ROJAS S. Evidences of two-regimes in the measurement of Ru particle size effect for CO dissociation during Fischer-Tropsch synthesis[J]. ChemCatChem, 2014, 6(7): 2084-2094. doi: 10.1002/cctc.v6.7
    [30] SHINCHO E, EGAWA C, NAITO S, TAMARU K. The behaviour of CO adsorbed on Ru (1, 1, 1, 0) and Ru (001); the dissociation of CO at the step sites of the Ru (1, 1, 1, 0) surface[J]. Surf Sci, 1985, 149(1): 1-16. doi: 10.1016/S0039-6028(85)80009-1
    [31] BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Appl Catal A: Gen, 2001, 212(1/2): 17-60. doi: 10.1002/9780471730071.ch5/summary
    [32] HE J, YONEYAMA Y, XU B, NISHIYAMA N, TSUBAKI N. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins[J]. Langmuir, 2005, 21(5): 1699-1702. doi: 10.1021/la047217h
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  26
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回