留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成气直接转化制低碳烯烃催化剂设计及反应条件优化

田育峰 王浩 董梅 秦张峰 樊卫斌 王建国

田育峰, 王浩, 董梅, 秦张峰, 樊卫斌, 王建国. 合成气直接转化制低碳烯烃催化剂设计及反应条件优化[J]. 燃料化学学报(中英文), 2018, 46(6): 680-691.
引用本文: 田育峰, 王浩, 董梅, 秦张峰, 樊卫斌, 王建国. 合成气直接转化制低碳烯烃催化剂设计及反应条件优化[J]. 燃料化学学报(中英文), 2018, 46(6): 680-691.
TIAN Yu-feng, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Design of the catalysts for direct conversion of syngas to light olefins and optimization of the reaction conditions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 680-691.
Citation: TIAN Yu-feng, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Design of the catalysts for direct conversion of syngas to light olefins and optimization of the reaction conditions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 680-691.

合成气直接转化制低碳烯烃催化剂设计及反应条件优化

基金项目: 

国家自然科学基金 21773281

山西省回国留学人员科研项目 2014-102

详细信息
  • 中图分类号: O643.36

Design of the catalysts for direct conversion of syngas to light olefins and optimization of the reaction conditions

Funds: 

the National Natural Science Foundation of China 21773281

Shanxi Scholarship Council of China 2014-102

More Information
  • 摘要: 采用水热法合成了相同粒径、不同硅铝比的ZSM-5分子筛,并通过浸渍法将Fe基(Fe-Cu-K)催化剂负载于ZSM-5上,系统考察了分子筛硅铝比变化对合成气制烯烃(FTO)反应的影响。结果表明,反应条件、分子筛酸性对CO转化率和低碳烯烃选择性有显著影响。当ZSM-5分子筛硅铝比为50时负载型催化剂有着最高的CO转化率(84.71%)和低碳烯烃选择性(32.08%)。H2-TPR结果表明,硅铝比为50的Z50/FeCuK中Fe物相的还原度最高。原位漫反射红外光谱(DRIFTS)、热重差热分析(TG-DTA)、X射线粉末衍射(XRD)等结果表明,Z50/FeCuK催化剂表面吸附的碳酸盐和烃类吸附物种最多,且其反应后形成了较多的FeCx晶相。最后对反应条件进行了优化,结果表明,温度为310 ℃,H2/CO(volume ratio)=2和压力为1.0 MPa时FTO的催化性能最优。
  • 图  1  ZSM-5及ZSM-5/FeCuK催化剂的XRD谱图

    Figure  1  XRD patterns of ZSM-5 (a) and ZSM-5/FeCuK (b) catalysts with different molar ratio of Si/Al

    图  2  不同硅铝比ZSM-5及负载FeCuK催化剂的SEM照片

    Figure  2  SEM images of ZSM-5 and supported FeCuK catalysts with different molar ratio of Si/Al

    (a): Z20; (b): Z20/FeCuK; (c): Z50; (d): Z50/FeCuK; (e): Z100; (f): Z100/FeCuK

    图  3  不同硅铝比ZSM-5及负载FeCuK催化剂的孔径分布

    Figure  3  Pore size distribution of ZSM-5 with different molar ratio of Si/Al and supported FeCuK catalysts

    图  4  Z20负载Fe、Cu、FeCuK,Z50负载Fe、Cu、FeCuK和Z100负载

    Fe、Cu、FeCuK催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of Z20 supported Fe, Cu, FeCuK catalysts (a), Z50 supported

    Fe, Cu, FeCuK catalysts (b) and Z100 supported Fe, Cu, FeCuK catalysts (c)

    图  5  ZSM-5及负载FeCuK催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of ZSM-5 (a) and supported FeCuK (b) catalysts

    图  6  ZSM-5及负载FeCuK催化剂的Py-FTIR谱图

    Figure  6  Py-FTIR profiles of ZSM-5 (a) and supported FeCuK (b) catalysts

    图  7  不同硅铝比ZSM-5负载FeCuK催化剂的催化活性

    Figure  7  Catalytic activity of supported FeCuK catalysts with time on stream

    图  8  原位还原及反应72h后催化剂的XRD谱图

    Figure  8  X-ray diffraction patterns of in-situ reduction and used ZSM-5/FeCuK catalysts after reaction of 72h

    图  9  反应72h后催化剂的热重曲线

    Figure  9  TG curves of the used catalysts after 72h reaction

    图  10  不同催化剂上原位吸附CO的红外光谱谱图

    Figure  10  FT-IR spectra of adsorbed CO over different catalysts

    (Ar purging at room temperature ((a), (b), (c)) and changes as temperature increasing ((d), (e), (f)))

    表  1  不同催化剂的物理化学性质和酸碱性质

    Table  1  Physicochemical properties and acid-base properties of the catalysts with different molar ratio of Si/Al

    Fresh catalyst Si/Al
    (molar ratio)a
    ABET
    /(m2·g-1)
    vmic
    /(m3·g-1)
    vtotal
    /(m3·g-1)
    Acidic siteb
    /(mmol·g-1)
    Acidic typec
    /(mmol·g-1)
    Basic intensityd/
    (mmol·g-1)
    strong weak Brønsted Lewis
    Z20 17.6 375.68 0.12 0.35 0.34 0.51 0.327 0.151 -
    Z20/FeCuK 19.6 200.46 0.06 0.23 - 0.16 - 0.183 0.023
    Z50 40.5 342.75 0.13 0.20 0.26 0.19 0.115 0.079 -
    Z50/FeCuK 44.8 195.50 0.07 0.14 - 0.09 - 0.163 0.067
    Z100 73.4 352.59 0.13 0.20 0.16 0.08 0.003 0.022 -
    Z100/FeCuK 77.3 213.81 0.07 0.14 - 0.05 - 0.067 0.079
    a:the result from ICP; b:density of acid sites, determined by NH3-TPD, strong, NH3 desorbed at 250-500℃; weak, NH3 desorbed at 120-250℃; c:density of acid sites, determined by Py-FTIR; d:intensity of surface basic sites, determined by CO2-TPD, desorbed above 100℃
    下载: 导出CSV

    表  2  不同催化剂的催化性能

    Table  2  Catalyst performance of the catalysts

    Catalyst Fe/Cu/Ka xCO /% sCO2/% Selectivity of hydrocarbons s/% O/(O+P) Yield to
    C2-4= w/%b
    CH4 C2-40 C2-4= C5+
    Z20/FeCuK 20.4/3.1/4.9 71.98 42.64 28.72 27.73 13.17 30.38 0.32 5.58
    Z50/FeCuK 17.7/3.1/4.9 84.71 46.87 22.83 11.08 32.08 34.01 0.74 13.61
    Z100/FeCuK 18.9/3.0/4.7 38.60 45.77 20.08 8.56 20.85 50.50 0.71 4.27
    a:the result from ICP; b: CO (mol%) transformed to olefins in the range of C2-4 hydrocarbons; reaction conditions: 310℃,1.0MPa,H2/CO(volume ratio)=2,GHSV=4000mL/h; the values were obtained at the steady-state after 48h on stream
    下载: 导出CSV

    表  3  反应温度对催化剂FTO性能的影响

    Table  3  Effect of reaction temperature on the FTO performance of catalysts

    Temp.t/℃ xCO /% sCO2 /% Selectivity of hydrocarbons s/% O/(O+P) Yield to C2-4= w/%
    CH4 C2-40 C2-4= C5+
    290 58.28 45.19 19.35 10.22 36.01 34.42 0.78 9.66
    310 84.71 46.87 22.83 11.08 32.08 34.01 0.74 13.61
    330 73.91 48.15 33.68 13.10 33.64 19.58 0.72 12.32
    350 58.96 49.13 44.10 13.74 26.54 15.62 0.66 8.36
    reaction conditions: 1.0MPa,H2/CO(volume ratio)=2,GHSV=4000mL/h, the values were obtained at the steady-state after 48h on stream
    下载: 导出CSV

    表  4  H2/CO体积比对催化剂FTO性能的影响

    Table  4  Effect of different H2/CO volume ratios on the FTO performance of the catalysts

    H2/CO (volume ratio) xCO /% sCO2 /% Selectivity of hydrocarbons s/% O/(O+P) Yield to C2-4= w/%
    CH4 C2-40 C2-4= C5+
    2/1 84.71 46.87 22.83 11.08 32.08 34.01 0.74 13.61
    1.5/1 80.08 50.61 22.53 11.06 33.48 32.93 0.75 12.48
    1/1 60.19 52.32 22.28 9.79 32.61 35.32 0.77 8.79
    1/1.5 38.35 54.43 19.54 7.34 33.91 39.22 0.82 5.54
    reaction conditions: 310℃,1.0MPa,GHSV=4000mL/h, the values were obtained at the steady-state after 48h on stream
    下载: 导出CSV

    表  5  反应压力对催化剂FTO性能的影响

    Table  5  Effect of reaction pressure on the FTO performance of the catalysts

    Pressure
    p/MPa
    xCO /% sCO2 /% Selectivity of hydrocarbons s/% O/(O+P) Yield to
    C2-4= w/%
    CH4 C2-40 C2-4= C5+
    0.5 31.47 45.24 34.03 8.46 37.86 19.65 0.82 5.42
    1.0 84.71 46.87 22.83 11.08 32.08 34.01 0.74 13.61
    1.5 86.77 46.96 22.54 12.09 30.71 34.66 0.72 13.56
    2.0 84.83 47.17 22.41 12.53 28.70 36.36 0.70 12.88
    reaction conditions: 310℃,H2/CO(volume ratio)=2,GHSV=4000mL/h, the values were obtained at the steady-state after 48h on stream
    下载: 导出CSV
  • [1] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catal, 2013, 3(9):2130-2149. doi: 10.1021/cs4003436
    [2] 于飞, 李正甲, 安芸蕾, 高鹏, 钟良枢, 孙予罕.合成气催化转化直接制备低碳烯烃研究进展[J].燃料化学学报, 2016, 44(7):801-814. http://rlhxxb.sxicc.ac.cn/CN/Y2016/V44/I07/801

    YU Fei, LI Zheng-jia, AN Yun-lei, GAO Peng, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins[J]. J Fuel Chem Technol, 2016, 44(7):801-814. http://rlhxxb.sxicc.ac.cn/CN/Y2016/V44/I07/801
    [3] TIAN P, WEI Y, YE M, LIU Z. Methanol to olefins (MTO):From fundamentals to commercialization[J]. ACS Catal, 2015, 5(3):1922-1938. doi: 10.1021/acscatal.5b00007
    [4] LIU Z, SUN C, WANG G, WANG Q, CAI G. New progress in R&D of lower olefin synthesis[J]. Fuel Process Technol, 2000, 62(2):161-172. https://www.deepdyve.com/lp/elsevier/new-progress-in-r-d-of-lower-olefin-synthesis-NDuQE2W5oy
    [5] WANG C, XU L, WANG Q. Review of directly producing light olefins via CO hydrogenation[J]. J Nat Gas Chem, 2003, 12(1):10-16. https://www.researchgate.net/publication/266893793_Review_of_Directly_Producing_Light_Olefins_via_CO_Hydrogenation
    [6] JANARDANARAO M. Direct catalytic conversion of synthesis gas to lower olefins[J]. Ind Eng Chem, 1990, 29(9):1735-1753. doi: 10.1021/ie00105a001
    [7] LOHITHARN N, GOODWIN J G, LOTERO E. Fe-based Fischer-Tropsch synthesis catalysts containing carbide-forming transition metal promoters[J]. J Catal, 2008, 255(1):104-113. doi: 10.1016/j.jcat.2008.01.026
    [8] FEYZI M, IRANDOUST M, MIRZAEI A A. Effects of promoters and calcination conditions on the catalytic performance of iron-manganese catalysts for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2011, 92(5):1136-1143. doi: 10.1016/j.fuproc.2011.01.010
    [9] ZHANG C H, YANG Y, TENG B, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2):405-415. doi: 10.1016/j.jcat.2005.11.004
    [10] CHENG Y, LIN J, XU K, WANG H, YAO X, PEI Y, YAN S, QIAO M, ZONG B. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catal, 2016, 6(1):389-399. doi: 10.1021/acscatal.5b02024
    [11] KEYVANLOO K, HORTON J B, HECKER W C, ARGYLE M D. Effects of preparation variables on an alumina-supported FeCuK Fischer-Tropsch catalyst[J]. Catal Sci Technol, 2014, 4(12):4289-4300. doi: 10.1039/C4CY00510D
    [12] KANG S H, BAE J W, PRASAD P S, PARK S J, WOO K J, JUN K W. Effect of preparation method of Fe-based Fischer-Tropsch catalyst on their light olefin production[J]. Catal Lett, 2009, 130(3/4):630-636. doi: 10.1007/s10562-009-9925-y
    [13] ÖZKARA-AYD1NO ĞLUS, ATA Ö, ÖF G L, K1NAYYIĞIT S, SAL S, BARANAK M, BOZ İ. α-olefin selectivity of Fe-Cu-K catalysts in Fischer-Tropsch synthesis:Effects of catalyst composition and process conditions[J]. Chem Eng J, 2012, 181:581-589. http://www.academia.edu/17314864/Effects_of_preparation_variables_on_an_alumina-supported_FeCuK_Fischer_Tropsch_catalyst
    [14] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277):1065-1068. doi: 10.1126/science.aaf1835
    [15] CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins:Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 128(15):4803-4806. doi: 10.1002/ange.201601208
    [16] ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623):84-87. doi: 10.1038/nature19786
    [17] SUN B, QIAO M, FAN K, ULRICH J, TAO F. Fischer-Tropsch synthesis over molecular sieve supported catalysts[J]. ChemCatChem, 2011, 3(3):542-550. doi: 10.1002/cctc.v3.3
    [18] BARANAK M, GVRVNLV B, SAR1OĞLAN A, ATAÖ, ATAK L H. Low acidity ZSM-5 supported iron catalysts for Fischer-Tropsch synthesis[J]. Catal Today, 2013, 207:57-64. doi: 10.1016/j.cattod.2012.04.013
    [19] PLANA-PALLEJ J, ABELL S, BERRUECO C, MONTAN D. Effect of zeolite acidity and mesoporosity on the activity of Fischer-Tropsch Fe/ZSM-5 bifunctional catalysts[J]. Appl Catal A:Gen, 2016, 515:126-135. doi: 10.1016/j.apcata.2016.02.004
    [20] KANG S H, BAE J W, PRASAD P S, JUN K W. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catal Lett, 2008, 125(3/4):264-270.
    [21] BAE J W, PARK S J, KANG S H, LEE Y J, JUN K W, RHEE Y W. Effect of Cu content on the bifunctional Fischer-Tropsch Fe-Cu-K/ZSM5 catalyst[J]. J Ind Eng Chem, 2009, 15(6):798-802. doi: 10.1016/j.jiec.2009.09.002
    [22] CHEON J Y, KANG S H, BAE J W, PARK S J, JUN K W, DHAR G M, LEE K Y. Effect of active component contents to catalytic performance on Fe-Cu-K/ZSM5 fischer-tropsch catalyst[J]. Catal Lett, 2010, 134(3/4):233-241.
    [23] PARK J Y, LEE Y J, JUN K W, BAE J W, VISWANADHAM N, KIM Y H. Direct conversion of synthesis gas to light olefins using dual bed reactor[J]. J Ind Eng Chem, 2009, 15(6):847-853. doi: 10.1016/j.jiec.2009.09.011
    [24] LI Q, HEDLUND J, STERTE J, CREASER D, BONS A J. Synthesis and characterization of zoned MFI films by seeded growth[J]. Microporous Mesoporous Mater, 2002, 56(3):291-302. doi: 10.1016/S1387-1811(02)00503-6
    [25] ROSTAMIZADEH M, YARIPOUR F. Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction[J]. Fuel, 2016, 181:537-546. doi: 10.1016/j.fuel.2016.05.019
    [26] LI S Z, DING W P, GDM A, IGLESIA E. Spectroscopic and transient kinetic studies of site requirements in iron-catalyzed Fischer-Tropsch synthesis[J]. J Phys Chem B, 2012, 106(1):85-91. http://iglesia.cchem.berkeley.edu/Publications/JPhysChemB_106_85_2002.pdf
    [27] LEE Y J, PARK J Y, JUN K W, BAE J W, VISWANADHAM N. Enhanced production of C2-C4 olefins directly from synthesis gas[J]. Catal Lett, 2008, 126(1/2):149-154.
    [28] JIANG S, ZHANG H, YAN Y, ZHANG X. Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater[J]. Microporous Mesoporous Mater, 2016, 240:108-116.
    [29] CHERNAVSKⅡ P A, KAZAK V O, PANKINA G V, PERFILIEV Y D, LI T, VIRGINIE M, KHODAKOV A Y. Influence of copper and potassium on the structure and carbidisation of supported iron catalysts for Fischer-Tropsch synthesis[J]. Catal Sci Technol, 2017, 7(11):2325-2334. doi: 10.1039/C6CY02676A
    [30] KEYVANLOO K, HECKER W C, WOODFIELD B F, BARTHOLOMEW C H. Highly active and stable supported iron Fischer-Tropsch catalysts:Effects of support properties and SiO2 stabilizer on catalyst performance[J]. J Catal, 2014, 319:220-231. doi: 10.1016/j.jcat.2014.08.015
    [31] 邵光印, 张玉龙, 张征湃, 张俊, 苏俊杰, 刘达, 赫崇衡, 徐晶, 韩一帆.不同硅铝比ZSM-5负载铁基催化剂二氧化碳加氢性能[J].化工学报, 2017, 68(2):670-678. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166374.htm

    SHAO Guang-yin, ZHANG Yu-long, ZHANG Zheng-pai, ZHANG Jun, SU Jun-jie, LIU Da, HE Chong-heng, XU Jing, HAN Yi-fan. CO2 hydrogenation over Fe catalysts supported on ZSM-5 zeolite with different ratios of Si/Al[J]. J Chem Ind Eng, 2017, 68(2):670-678. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166374.htm
    [32] LU J, YANG L, XU B, WU Q, ZHANG D, YUAN S, ZHAI Y, WANG X, FAN Y, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014, 4(2):613-621. doi: 10.1021/cs400931z
    [33] JIANG M, NAOTO KOIZUMI A, YAMADA M. Adsorption properties of iron and iron-manganese catalysts investigated by in-situ diffuse reflectance FT-IR spectroscopy[J]. J Phys Chem B, 2000, 104(32):7636-7643. doi: 10.1021/jp000065o
    [34] BIAN G, OONUKI A, KOBAYASHI Y, KOIZUMI N, YAMADA M. Syngas adsorption on precipitated iron catalysts reduced by H2, syngas or CO and on those used for high-pressure FT synthesis by in situ diffuse reflectance FT-IR spectroscopy[J]. Appl Catal A:Gen, 2001, 219(1/2):13-24. https://www.researchgate.net/publication/236765369_The_Effect_of_Potassium_Addition_on_the_Surface_Chemical_Structure_and_Activity_of_Supported_Iron
    [35] BOELLAARD E, VAN DER KAM, GEUS J W. Behaviour of a cyanide-derived Fe/Al2O3 catalyst during Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1996, 147(1):229-245. doi: 10.1016/S0926-860X(96)00192-5
    [36] BOTES F G. The effect of a higher operating temperature on the Fischer-Tropsch/HZSM-5 bifunctional process[J]. Appl Catal A:Gen, 2005, 284(1):21-29.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  32
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-04-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回