留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙酸自热重整制氢用类水滑石衍生Zn-Ni-Al-Fe-O催化剂研究

杨浩 李辉谷 谢星月 王巧 段义平 黄利宏

杨浩, 李辉谷, 谢星月, 王巧, 段义平, 黄利宏. 乙酸自热重整制氢用类水滑石衍生Zn-Ni-Al-Fe-O催化剂研究[J]. 燃料化学学报(中英文), 2018, 46(11): 1352-1358.
引用本文: 杨浩, 李辉谷, 谢星月, 王巧, 段义平, 黄利宏. 乙酸自热重整制氢用类水滑石衍生Zn-Ni-Al-Fe-O催化剂研究[J]. 燃料化学学报(中英文), 2018, 46(11): 1352-1358.
YANG Hao, LI Hui-gu, XIE Xing-yue, WANG Qiao, DUAN Yi-ping, HUANG Li-hong. Layered double hydroxide-derived catalyst of Zn-Ni-Al-Fe-O for hydrogen production via auto-thermal reforming of acetic acid[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1352-1358.
Citation: YANG Hao, LI Hui-gu, XIE Xing-yue, WANG Qiao, DUAN Yi-ping, HUANG Li-hong. Layered double hydroxide-derived catalyst of Zn-Ni-Al-Fe-O for hydrogen production via auto-thermal reforming of acetic acid[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1352-1358.

乙酸自热重整制氢用类水滑石衍生Zn-Ni-Al-Fe-O催化剂研究

基金项目: 

国家自然科学基金 21276031

四川省科技厅国际合作项目 2015HH0013

详细信息
    通讯作者:

    LI Hui-gu, E-mail:584045893@qq.com

    HUANG Li-hong, E-mail:huanglihong06@cdut.cn

  • 本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: TQ13

Layered double hydroxide-derived catalyst of Zn-Ni-Al-Fe-O for hydrogen production via auto-thermal reforming of acetic acid

Funds: 

the National Natural Science Foundation of China 21276031

the International Cooperation Program Sponsored by the S & T Department of Sichuan Province of China 2015HH0013

  • 摘要: 采用共沉淀法制备了Zn2.4Ni0.6AlxFe1-xO4.5±δx=1/0.5/0)系列类水滑石型镍基催化剂,用于乙酸自热重整制氢,并利用XRD、H2-TPR、BET、XPS等表征手段对催化剂进行了表征。结果表明,Zn2.4Ni0.6Al0.5Fe0.5O4.5±δ催化剂在乙酸自热重整中乙酸转化率维持在100%,氢气产率为2.39 mol-H2/mol-HAc。Zn-Al水滑石前驱体经焙烧后形成了ZnO为骨架的复合氧化物,铁的适量添加增大了催化剂的比表面积,经还原后形成FeNiZn合金,Fe以及Zn的给电子作用提高了Ni的抗氧化能力,催化剂的抗氧化烧结和抗积炭能力得到提高。
    1)  本文的英文电子版由 Elsevier 出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  ZNAF系列类水滑石型镍基催化剂用于乙酸自热重整反应

    Figure  1  Catalytic performance of catalysts for ATR of HAc

    (a): ZNA; (b): ZNA0.5F0.5; (c): ZNF
    : xHAC; ●: sCO2; △: sCO; ▼: sCH4; ★: sCH3COCH3; ○: wH2

    图  2  ZNA0.5F0.5催化剂的自热重整反应活性图

    Figure  2  ATR of HAc over the catalyst ZNA0.5F0.5

    ATR of HAc over the catalyst ZNA0.5F0.5
    : xHAC; ▲: sCO2; ▽: sCO; ◄: sCH4; ☆: sCH3COCH3; ○: wH2

    图  3  ZNAF系列催化剂的X射线粉末衍射图

    Figure  3  XRD patterns of ZNAF catalysts

    (a): precursors; (b): calcined
    a: ZNA; b: ZNA0.5F0.5; c: ZNF

    图  4  ZNAF系列催化剂的BET表征

    Figure  4  BET of ZNAF catalysts

    (a): nitrogen adsorption-desorption isotherms; (b): pore size distribution
    a: ZNA; b: ZNA0.5F0.5; c: ZNF

    图  5  ZNAF系列催化剂X射线粉末衍射图

    Figure  5  XRD patterns of ZNAF catalysts

    (a): reduced; (b): spent
    a: ZNA; b: ZNA0.5F0.5; c: ZNF

    图  6  ZNAF系列还原后及反应后催化剂光电子能谱分析

    Figure  6  XPS spectra of reduced (a) and spent (b) catalysts

    a: ZNA-R; b: ZNA0.5F0.5-R; c: ZNF-R; d: ZNA-S; e: ZNA0.5F0.5-S; f: ZNF-S

    图  7  ZNAF系列反应后催化剂热重分析图

    Figure  7  TG/DTG profiles of the spent catalysts

    (a): ZNA; (b): ZNA0.5F0.5; (c): ZNF

    表  1  催化剂清单及比表面积、孔体积、平均孔径、粒径

    Table  1  List of crystal sizes, partical size and BET data of the catalysts

    Catalyst Nominal compisitions Surface area A/
    (m2·g-1)
    Pore volume v/
    (cm3·g-1)
    Average pore size d/nm Particle size measured by XRD d/nm
    reduced spent
    ZNA Zn2.4Ni0.6AlO4.5±δ 40.0 0.146 12.3 16.0a 17.9a
    ZNA0.5F0.5 Zn2.4Ni0.6Al0.5Fe0.5O4.5±δ 48.3 0.145 9.8 16.6b 16.1b
    ZNF Zn2.4Ni0.6FeO4.5±δ 31.2 0.088 10.2 22.6b 28.0b
    a: 43.6° for NiZn alloy;b: 51.3° for NiFe alloy
    下载: 导出CSV
  • [1] ZENG G M, LIU Q H, GU R X, ZHANG L H, LI Y D. Synergy effect of MgO and ZnO in a Ni/Mg-Zn-Al catalyst during ethanol steam reforming for H2-rich gas production[J]. Catal Today, 2011, 178(1):206-213. doi: 10.1016/j.cattod.2011.07.036
    [2] FENG M H, LIU J D, ZHANG F B, HUANG L H. Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid[J]. Chem Paper, 2015, 69(9). http://cn.bing.com/academic/profile?id=b61eed8b64cfcce6f0c1d47ca5364839&encoded=0&v=paper_preview&mkt=zh-cn
    [3] HUANG L H, ZHANG F B, WANG N, CHEN R R, HSU A T. Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of ethanol[J]. Int J Hydro Energy, 2012, 37(2):1272-1279. doi: 10.1016/j.ijhydene.2011.10.005
    [4] ZHONG X Y, XIE W, WANG N, DUAN Y P, SHANG R S, HUANG L H. Dolomite-derived Ni-based catalysts with Fe modification for hydrogen production via auto-thermal reforming of acetic acid[J]. Catal, 2016, 6(6):85. doi: 10.3390/catal6060085
    [5] HUANG L H, ZHONG X Y, DUAN Y P, XIE W, CHEN R R. Precious metal-promoted Ni-Mg-Al-Fe-O catalyst for hydrogen production with fast startup via catalytic partial oxidation of butanol[J]. Int J Hydrogen Energy, 2015.40(4):1717-1725. http://cn.bing.com/academic/profile?id=307f16e23c46c351917de1c78385fc78&encoded=0&v=paper_preview&mkt=zh-cn
    [6] ZHANG F B, LI M, YANG L, YE S Z, HUANG L H. Ni-Mg-Mn-Fe-O catalyst derived from layered double hydroxide for hydrogen production by auto-thermal reforming of ethanol[J]. Catal Commun, 2014, 43:6-10. doi: 10.1016/j.catcom.2013.08.024
    [7] HUANG L H, LIU Q, CHEN R R, HSU A T. Hydrogen production via auto-thermal reforming of bio-ethanol:The role of iron in layered double hydroxide-derived Ni0.35Mg2.65AlO4.5±δ catalysts[J]. Appl Catal A:Gen, 2011, 393(1/2):302-308.
    [8] 李树娜, 石奇, 李小军, 方振华, 孙平, 周跃花, 张杏梅, 杨晓慧.金属掺杂Ce-M(M=Fe、Ni和Cu)催化剂的CO低温氧化性能研究[J].燃料化学学报, 2017, 45(6):707-713. doi: 10.3969/j.issn.0253-2409.2017.06.009

    LI Shu-na, SHI Qi, LI Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol, 2017, 45(6):707-713. doi: 10.3969/j.issn.0253-2409.2017.06.009
    [9] ZHAO X F, ZHANG F Z, XU S L, EVANS D G, DUAN X. From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition:Transformation mechanism and UV-blocking properties of the product[J]. Chem Mater, 2010, 22(13):3933-3942. doi: 10.1021/cm100383d
    [10] JOSEPH W B, PAUL S B. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts[J]. Chem Mater, 1999, 11:298-302. doi: 10.1021/cm980523u
    [11] LI X R, ZHANG C, CHENG H Y, HE L M, LIN W W, YU Y C, ZHAO F Y. Effect of Zn doping on the hydrogenolysis of glycerol over ZnNiAl catalyst[J]. J Mol Catal A:Chem, 2014, 395:1-6. doi: 10.1016/j.molcata.2014.07.021
    [12] HUANG L H, XIE J, CHEN R R, CHU D, HSU A T. Fe promoted Ni-Ce/Al2O3 in auto-thermal reforming of ethanol for hydrogen production[J]. Catal Lett, 2009, 130(3/4):432-439. doi: 10.1007/s10562-009-9978-y
    [13] BOLSHAK E, ABELLÓ S, MONTANÉ D. Ethanol steam reforming over Ni-Fe-based hydrotalcites:Effect of iron content and reaction temperature[J]. Int J Hydroger Energy, 2013, 38(14):5594-5604. doi: 10.1016/j.ijhydene.2013.02.077
    [14] WANG D F, ZHANG X L, GAO Y Y, XIAO F K, WEI W, SUN Y H. Synthesis of dimethyl carbonate from methyl carbamate and methanol over lanthanum compounds[J]. Fuel Process Technol, 2010, 91(9):1081-1086. doi: 10.1016/j.fuproc.2010.03.017
    [15] CHEN G Y, XU N G, LI X P, LIU Q L, YANG H J, LI W Q. Hydrogen production by aqueous-phase reforming of ethylene glycol over a Ni/Zn/Al derived hydrotalcite catalyst[J]. RSC Adv, 2015, 5(74):60128-60134. doi: 10.1039/C5RA07184D
    [16] PAN Z Y, WANG R J, CHEN J X. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts:Geometric and electronic effects of oxophilic Zn[J]. Appl Catal B:Environ, 2018, 224:88-100. http://cn.bing.com/academic/profile?id=dc2d7f537e32069df2641c7c84593857&encoded=0&v=paper_preview&mkt=zh-cn
    [17] HUANG L H, XIE J, CHEN R R, CHU D, CHU W, HSU A. Effect of iron on durability of nickel-based catalysts in auto-thermal reforming of ethanol for hydrogen production[J]. Int J Hydrogen Energy, 2008, 33(24):7448-7456.1 doi: 10.1016/j.ijhydene.2008.09.062
    [18] MONTANARI T, SISANI M, NOCCHETTI M, VIVANI R, DELGADO M C H, RAMIS G, BUSCA G, COSTANTINO U. Zinc-aluminum hydrotalcites as precursors of basic catalysts:Preparation, characterization and study of the activation of methanol[J]. Catal Today, 2010, 152(1/4):104-109. http://www.sciencedirect.com/science/article/pii/S0920586109006117
    [19] VELU S, SUZUKI K, VIJAYARAJ M, BARMAN S, GOPINATH C S. In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol[J]. Appl Catal B:Environ, 2005, 55(4):287-299. doi: 10.1016/j.apcatb.2004.09.007
    [20] HUANG L H, LIU Q, CHEN R R, CHU D, HSU A T. Layered double hydroxide derived Co0.3Mg2.7Al1-xFexO4.5±δ catalysts for hydrogen production via auto-thermal reforming of bio-ethanol[J]. Catal Commun, 2010, 12(1):40-45. doi: 10.1016/j.catcom.2010.05.019
    [21] CHE F L, GRAY J T, HA S, MCEWEN J S. Reducing reaction temperature, steam requirements, and coke formation during methane steam reforming using electric fields:A microkinetic modeling and experimental study[J]. ACS Catal, 2017, 7(10):6957-6968. doi: 10.1021/acscatal.7b01587
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-08-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回