留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤烟气中As、Se、Pb的形态分布及S、Cl元素对其形态分布的影响

刘忠 白宝泉 王硕

刘忠, 白宝泉, 王硕. 燃煤烟气中As、Se、Pb的形态分布及S、Cl元素对其形态分布的影响[J]. 燃料化学学报(中英文), 2020, 48(11): 1298-1309.
引用本文: 刘忠, 白宝泉, 王硕. 燃煤烟气中As、Se、Pb的形态分布及S、Cl元素对其形态分布的影响[J]. 燃料化学学报(中英文), 2020, 48(11): 1298-1309.
LIU Zhong, BAI Bao-quan, WANG Shuo. Species distribution of As, Se and Pb in coal-fired flue gas and influence of elements S and Cl on them[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1298-1309.
Citation: LIU Zhong, BAI Bao-quan, WANG Shuo. Species distribution of As, Se and Pb in coal-fired flue gas and influence of elements S and Cl on them[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1298-1309.

燃煤烟气中As、Se、Pb的形态分布及S、Cl元素对其形态分布的影响

基金项目: 

国家重点研发计划 2018YFB0605101

国家自然科学基金 51676070

详细信息
  • 中图分类号: TK16

Species distribution of As, Se and Pb in coal-fired flue gas and influence of elements S and Cl on them

Funds: 

the National Key Research and Development Program of China 2018YFB0605101

the National Natural Science Foundation of China 51676070

More Information
  • 摘要: 基于化学热力学平衡分析方法,计算分析了燃煤烟气中重金属As、Se、Pb的形态分布规律,研究了S、Cl等元素对As、Se、Pb的形态分布规律的影响。结果表明,氧化性气氛下,As以As2O5、As4O6、AsO等氧化物的形式存在;Se主要以SeO2形式存在;Pb在1000 K以下主要是固态PbSO4,1200 K以上为气态PbO。还原性气氛下,As在较低温度时为固态As2S2,900-1400 K以As2、AsS、AsN气体共存,2000 K以上全部转化为气态AsO。Se在1100 K以下主要以气态H2Se存在,1100 K开始生成SeS和Se2气体,1800 K时主要是气态Se和少量气态SeO;Pb在中低温时主要是PbS,1800 K以上气态Pb为主要存在形态。S在还原性气氛下增大了AsS(g)、PbS(g)、SeS(g)的比例,氧化性气氛下对As、Se、Pb形态分布基本无影响;Cl无论在氧化还是还原气氛下对As、Se影响均较小,但对Pb的形态分布影响较大。
  • 图  1  还原性气氛与氧化性气氛下As与煤的形态分布

    (a): reducing atmosphere; (b): oxidizing atmosphere

    Figure  1  Calculation results of species distribution of As and coal in reducing and oxidizing atmosphere

    图  2  还原性气氛与氧化性气氛下Se与煤的形态分布

    Figure  2  Calculation results of species distribution of Se and coal in reducing and oxidizing atmosphere

    (a): reducing atmosphere; (b): oxidizing atmosphere

    图  3  还原性气氛与氧化性气氛下Pb与煤的形态分布

    Figure  3  Calculation results of species distribution of Pb and coal in reducing and oxidizing atmosphere

    (a): reducing atmosphere; (b): oxidizing atmosphere

    图  4  还原性气氛下不同S含量对As形态分布的影响

    Figure  4  Effects of different concentrations of S on species distribution of As in reducing atmosphere

    (a): As + coal + S; (b): As+ coal + 5S; (c): As+ coal + 10S

    图  5  氧化性气氛下不同S含量对As形态分布的影响

    Figure  5  Effects of different concentrations of S on species distribution of As in oxidizing atmosphere

    (a): As + coal + S; (b): As+ coal + 5S; (c): As+ coal + 10S

    图  6  还原性气氛下不同S含量对Se形态分布的影响

    Figure  6  Effects of different concentrations of S on species distribution of Se in reducing atmosphere

    (a): Se + coal + S; (b): Se+ coal + 5S; (c): Se+ coal + 10S

    图  7  氧化性气氛下不同S含量对Se形态分布的影响

    Figure  7  Effects of different concentrations of S on species distribution of Se in oxidizing atmosphere

    (a): Se + coal + S; (b): Se+ coal + 5S; (c): Se+ coal + 10S

    图  8  还原性气氛下不同S含量对Pb形态分布的影响

    Figure  8  Effects of different concentrations of S on species distribution of Pb in reducing atmosphere

    (a): Pb + coal + S; (b): Pb + coal + 5S; (c): Pb + coal + 10S

    图  9  氧化性气氛下不同S含量对Pb形态分布的影响

    Figure  9  Effects of different concentrations of S on species distribution of Pb in oxidizing atmosphere

    (a): Pb + coal + S; (b): Pb + coal + 5S; (c): Pb + coal + 10S

    图  10  还原性气氛下不同Cl含量对As形态分布的影响

    (a): As + coal + Cl; (b): As + coal + 5Cl; (c): As + coal + 10Cl

    Figure  10  Effects of different concentrations of Cl on species distribution of As in reducing atmosphere

    图  11  氧化性气氛下不同Cl含量对As形态分布的影响

    Figure  11  Effects of different concentrations of Cl on species distribution of As in oxidizing atmosphere

    (a): As + coal + Cl; (b): As + coal + 5Cl; (c): As + coal + 10Cl

    图  12  还原性气氛下不同Cl含量对Se形态分布的影响

    Figure  12  Effects of different concentrations of Cl on species distribution of Se in reducing atmosphere

    (a): Se + coal + Cl; (b): Se + coal + 5Cl; (c): Se + coal + 10Cl

    图  13  氧化性气氛下不同Cl含量对Se形态分布的影响

    Figure  13  Effects of different concentrations of Cl on species distribution of Se in oxidizing atmosphere

    (a): Se + coal + Cl; (b): Se + coal + 5Cl; (c): Se + coal + 10Cl

    图  14  还原性气氛下不同Cl含量对Pb形态分布的影响

    Figure  14  Effects of different concentrations of Cl on species distribution of Pb in reducing atmosphere

    (a): Pb + coal + Cl; (b): Pb + coal + 5Cl; (c): Pb + coal + 10Cl

    图  15  氧化性气氛下不同Cl含量对Pb形态分布的影响

    Figure  15  Effects of different concentrations of Cl on species distribution of Pb in oxidizing atmosphere

    (a): Pb + coal + Cl; (b): Pb + coal + 5Cl; (c): Pb + coal + 10Cl

    表  1  输入煤初始条件

    Table  1  Initial condition of coal input

    ElementCHONSClAsSePb
    Quantity/mol64.0437.5176.35659.20.1780.845×10-33.19×10-37.06×10-35.22×10-3
    Content76.85%3.75%2.20%1.37%0.57%30 μg/g2.39 μg/g5.58 μg/g10.81 μg/g
    下载: 导出CSV
  • [1] 徐静颖, 卓建坤, 姚强.燃煤有机污染物生成排放特性与采样方法研究进展[J].化工学报, 2019, 70(8):2823-2834. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201908002.htm

    XU Jing-ying, ZHUO Jian-kun, YAO Qiang. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion[J]. J Chem Ind Eng, 2019, 70(8):2823-2834. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201908002.htm
    [2] 王丽.超低排放机组中汞、砷和硒等重金属的迁移特性研究[D].杭州: 浙江大学, 2018.

    WANG Li. Study on the partitioning characteristics of Hg, As, Se and other hazardous elements in ultra low emission coal fired power plants[D]. Hangzhou: Zhejiang University, 2018.
    [3] 郭欣, 郑楚光, 陈丹. 300MW煤粉锅炉砷排放特征的实验研究[J].环境科学, 2006, (4):631-634.

    GUO Xin, ZHENG Chu-guang, CHEN Dan. Characterization of arsenic emissions from a coal-fired power plant[D]. Environ Sci, 2006, (4): 631-634.
    [4] 徐文东, 曾荣树, 叶大年, QUEROL X.电厂煤燃烧后元素硒的分布及对环境的贡献[J].环境科学, 2005, (2):64-68. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ200502013.htm

    XU Wen-dong, ZENG Rong-shu, YE Da-nian, Querol X. Distributions and environmental impacts of selenium in wastes of coal from a power plant[J]. Environ Sci, 2005, (2):64-68. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ200502013.htm
    [5] 徐杰英.煤燃烧过程中痕量元素铅的反应机理研究[D].武汉: 华中科技大学, 2004.

    XU Jie-ying. Study on the reaction mechanism of trace element Pb in the coal combustion process[D]. Wuhan: Huazhong University of Science and Technology, 2004.
    [6] JIAO F, ZHANG L, SONG W. Effect of inorganic particulates on the condensation behavior of lead and zinc vapors upon flue gas cooling[J]. Proc Combust Inst, 2013, 34(2):2821-2829. https://www.sciencedirect.com/science/article/pii/S1540748912003549
    [7] 郭富强, 刘清才, 蒋历俊, 任山, 王铸, 赵齐.粒径和燃烧温度对燃煤颗粒物微观形貌影响研究[C].中国环境科学学会, 2016: 61-65.

    GUO Fu-qiang, LIU Qing-cai, JIANG Li-jun, REN Shan, WANG Zhu, ZHAO Qi. Influence of burning temperature and particle size on particulate matter microstructure during pulverized coal combustion[C]. Chin Soc Environ Sci, 2016: 61-65.
    [8] 李耀拉.煤焦化痕量元素的迁移与热力学形态的模拟研究[D].武汉: 武汉科技大学, 2009.

    LI Yao-la. The transformation and thermodynamics simuation of morphology of trace elements during the coal-coking[D]. Wuhan: Wuhan University of Science and Technology, 2009.
    [9] 田贺忠, 曲益萍, 王艳, 程珂, 潘迪.中国燃煤大气硒排放及其污染控制[J].中国电力, 2009, 42(8):53-57. http://d.wanfangdata.com.cn/Periodical/zgdl200908013

    TIAN He-zhong, QU Yi-ping, WANG Yan, CHENG Ke, PAN Di. Emission and control of atmospheric selenium from coal combustion in China[J]. Electric Power, 2009, 42(8):53-57. http://d.wanfangdata.com.cn/Periodical/zgdl200908013
    [10] 邓双, 张凡, 刘宇, 石应杰, 王红梅, 张辰, 王相凤, 曹晴.燃煤电厂铅的迁移转化研究[J].中国环境科学, 2013, 33(7):1199-1206. http://qikan.cqvip.com/Qikan/Article/Detail?id=46850231

    DENG Shuang, ZHANG Fan, LIU Yu, SHI Ying-jie, WANG Hong-mei, ZHANG Chen, WANG Xiang-feng, CAO Qing. Lead emission and speciation of coal-fired power plants in China[J]. Chin Environ Sci, 2013, 33(7):1199-1206. http://qikan.cqvip.com/Qikan/Article/Detail?id=46850231
    [11] 王泉海, 邱建荣, 温存, 熊全军, 吴辉, 孔凡海, 张小平.氧燃烧方式下痕量元素形态转化的热力学平衡模拟[C].中国工程热物理学会, 2005: 642-646.

    WANG Quan-hai, QIU Jian-rong, WEN Cun, XIONG Quan-jun, WU Hui, KONG Fan-hai, ZHANG Xiao-ping. Thermodynamic equilibrium simulation of trace element speciation in oxygen combustion[C]. CSET, 2005: 642-646.
    [12] 闫蓓.电厂燃煤过程中砷的迁移转化及控制技术[D].保定: 华北电力大学, 2006.

    YAN Bei. Arsenical transform and control technology in the process of coal-fired power plant[D]. Baoding: North China Electric Power University, 2006.
    [13] FRANDSEN F, JOHANSEN K D, RASMUSSEN P. Trace elements from combustion and gasification of coal-An equilibrium approach[J]. Prog Energy Combust, 1994, 20(2):115-138. https://www.sciencedirect.com/science/article/pii/0360128594900078
    [14] MALYKH N V, PERTSIKOV I Z. Study of the partitioning of trace elements during pulverized coal combustion[J]. Khimiya Tverdogo Tela, 1990, 24(4):50. https://www.researchgate.net/publication/234183120_The_partitioning_of_trace_elements_during_pulverized_coal_combustion
    [15] 冯荣.燃煤典型痕量元素化学热力学与动力学计算的研究与比较[D].武汉: 华中科技大学, 2004.

    FENG Rong. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering[D]. Wuhan: Huazhong University of Science and Technology, 2004.
    [16] YAN R. Parti oning of trace elements in the flue gas from coal combustion[D]. Doctoral Dissertation, 1999: 59-61.
    [17] 张宾.水泥窑协同处置固体废弃物过程中氯、硫、碱对重金属迁移的影响及作用机制研究[D].广州: 华南理工大学, 2019.

    ZHANG Bin. Study on the effects of chlorine, sulfur and alkali on the migration of heavy metals and related mechanisms during Co-processing solid waste in cement kiln[D]. Guangzhou: South China University of Technology, 2019.
    [18] 刘迎晖, 郑楚光, 游小清, 郭欣.燃煤过程中易挥发有毒痕量元素的相互作用[J].燃烧科学与技术, 2001, (4):243-247. http://www.cqvip.com/Main/Detail.aspx?id=12447617

    LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. Combust Sci Technol, 2001, (4):243-247. http://www.cqvip.com/Main/Detail.aspx?id=12447617
    [19] WU C, BISWAS P. An equilibrium analysis to determine the speciation of metals in an incinerator[J]. Combust Flame, 1993, 93(1):31-40. https://www.sciencedirect.com/science/article/pii/001021809390082E
    [20] 严玉朋, 黄亚继, 王昕晔, 张帅毅.城市生活垃圾焚烧中铅形态转化的热力学平衡[J].中南大学学报(自然科学版), 2016, 47(6):2166-2173. http://qikan.cqvip.com/Qikan/Article/Detail?id=669532658

    YAN Yu-peng, HUANG Ya-ji, WANG Xin-ye, ZHANG Shuai-yi. Thermodynamic equilibrium analysis of lead partitioning during MSW incineration[J]. J Central South Univ(Nat Sci Ed), 2016, 47(6):2166-2173. http://qikan.cqvip.com/Qikan/Article/Detail?id=669532658
    [21] 胡济民, 王瑟澜, 徐浩然, 吴亭亭.城市生活垃圾焚烧过程中铅的迁移特性探究[J].华东理工大学学报(自然科学版), 2018, 44(6):800-806. http://www.cqvip.com/QK/90601X/201806/7001015232.html

    HU Ji-min, WANG Se-lan, XU Hao-ran, WU Ting-ting. Partitioning of Pb during municipal solid waste incineration[J]. J East Chin Univ Sci Technol (Nat Sci Ed), 2018, 44(6):800-806. http://www.cqvip.com/QK/90601X/201806/7001015232.html
    [22] 陈勇.垃圾焚烧中镉、铅迁移转化特性研究[D].北京: 清华大学, 2008.

    CHEN Yong. Study on the partitioning and speciation of Cd and Pb during municipal solid waste incineration[D]. Beijing: Tsinghua University, 2008.
    [23] 丁建.两种废物重金属分布形态的热力学平衡模拟[D].沈阳: 沈阳航空航天大学, 2013.

    DING Jian. Thermodynamics equilibrium analysis of heavy metals in two kinds of wastes during thermal treatment[D]. Shenyang: Shenyang Aerospace University, 2013.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  123
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-10-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回