留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶凝胶法由细菌纤维素制备CuCe0.75Zr0.25Ox复合氧化物及其低温催化降解甲苯性能

杨青 郝庆兰 闫宁娜 赵若竹 赵晨晨 张庆 豆宝娟 宾峰

杨青, 郝庆兰, 闫宁娜, 赵若竹, 赵晨晨, 张庆, 豆宝娟, 宾峰. 溶胶凝胶法由细菌纤维素制备CuCe0.75Zr0.25Ox复合氧化物及其低温催化降解甲苯性能[J]. 燃料化学学报(中英文), 2017, 45(11): 1401-1408.
引用本文: 杨青, 郝庆兰, 闫宁娜, 赵若竹, 赵晨晨, 张庆, 豆宝娟, 宾峰. 溶胶凝胶法由细菌纤维素制备CuCe0.75Zr0.25Ox复合氧化物及其低温催化降解甲苯性能[J]. 燃料化学学报(中英文), 2017, 45(11): 1401-1408.
YANG Qing, HAO Qing-lan, YAN Ning-na, ZHAO Ruo-zhu, ZHAO Chen-chen, ZHANG Qing, DOU Bao-juan, BIN Feng. Preparation of CuCe0.75Zr0.25Ox composite by bacterial cellulose promoted sol-gel method and its catalytic performance in the toluene degradation at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1401-1408.
Citation: YANG Qing, HAO Qing-lan, YAN Ning-na, ZHAO Ruo-zhu, ZHAO Chen-chen, ZHANG Qing, DOU Bao-juan, BIN Feng. Preparation of CuCe0.75Zr0.25Ox composite by bacterial cellulose promoted sol-gel method and its catalytic performance in the toluene degradation at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1401-1408.

溶胶凝胶法由细菌纤维素制备CuCe0.75Zr0.25Ox复合氧化物及其低温催化降解甲苯性能

基金项目: 

国家自然科学基金青年科学基金 21307088

详细信息
  • 中图分类号: TQ426.83

Preparation of CuCe0.75Zr0.25Ox composite by bacterial cellulose promoted sol-gel method and its catalytic performance in the toluene degradation at low temperature

Funds: 

the National Natural Science Foundation of China 21307088

More Information
  • 摘要: 以绿色廉价的天然椰果细菌纤维素(BC)为造孔剂,采用溶胶凝胶法制备了CuCe0.75Zr0.25Ox复合氧化物催化剂,通过TG/DTG、N2低温物理吸脱附、XRD、H2-TPR、O2-TPD和Raman等手段对催化剂进行了表征,并对其在固定床上挥发性有机物(VOCs)降解的催化性能进行了研究。结果表明,利用BC精细的纤维网状结构和亲水性能与活性金属盐溶液形成凝胶,可有效制备介孔结构的复合氧化物催化剂。制备过程中,凝胶形式和成胶温度对催化剂降解甲苯的活性有较大影响;采用醇凝胶形式在70 ℃时制备的ACCZ-70催化剂完全降解甲苯的温度为205 ℃,明显低于已有文献报道的催化剂,这主要归因于该催化剂具有良好的低温还原性和高达0.81的氧空穴浓度。而采用水凝胶制备的催化剂降解甲苯时,在120-140 ℃存在吸附现象。
  • 图  1  催化剂的固定床评价装置示意图

    Figure  1  Schematic diagram of apparatus for catalyst evaluation

    图  2  细菌纤维素的TG和DTG曲线及CuCe0.75Zr0.25Ox催化剂的TG曲线

    Figure  2  TG/DTG curves of BC (a) and TG curves of CuCe0.75Zr0.25Ox catalysts (b)

    图  3  CuCe0.75Zr0.25Ox催化剂的N2物理吸附-脱附等温曲线和孔径分布

    Figure  3  N2 adsorption/desorption isotherms (a) and pore size distributions (b) of CuCe0.75Zr0.25Ox catalysts

    图  4  不同CuCe0.75Zr0.25Ox催化剂的XRD谱图

    Figure  4  XRD patterns of different CuCe0.75Zr0.25Ox catalysts

    图  5  不同CuCe0.75Zr0.25Ox催化剂的O2-TPD谱图

    Figure  5  O2-TPD profiles of different CuCe0.75Zr0.25Ox catalysts

    图  6  CuCe0.75Zr0.25Ox催化剂的Raman谱图及氧空位浓度

    Figure  6  Raman spectra (a) and oxygen vacancy concentration (b) of CuCe0.75Zr0.25Ox catalysts

    图  7  CuCe0.75Zr0.25Ox催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of different CuCe0.75Zr0.25Ox catalysts

    图  8  不同CuCe0.75Zr0.25Ox催化剂降解甲苯的转化率和CO2选择性

    Figure  8  Catalytic activity and CO2 selectivity of different CuCe0.75Zr0.25Ox catalysts for toluene degradation

    图  9  WCCZ-80催化剂重复降解甲苯的活性

    Figure  9  Repeated activities of WCCZ-80 catalysts for toluene degradation

    图  10  WCCZ-80和ACCZ-70催化降解甲苯的稳定性

    Figure  10  Stability of WCCZ-80 and ACCZ-70 catalysts for toluene degradation

    表  1  不同CuCe0.75Zr0.25Ox催化剂的制备参数

    Table  1  Preparation parameters of the different CuCe0.75Zr0.25Ox catalysts

    Catalyst Gel form Gel temperature t/℃
    WCCZ-70 water gel 70
    ACCZ-70 alcohol gel 70
    WCCZ-80 water gel 80
    ACCZ-80 alcohol gel 80
    下载: 导出CSV

    表  2  CuCe0.75Zr0.25Ox催化剂的比表面积、总孔容和平均孔径

    Table  2  ABET, vpand dpof different CuCe0.75Zr0.25Ox catalysts

    Catalyst ABET /(m2·g-1) vp /(cm3·g-1) dp /nm
    WCCZ-70 33.3 0.11 10.3
    ACCZ-70 38.1 0.13 10.7
    WCCZ-80 42.7 0.12 9.7
    ACCZ-80 24.1 0.09 10.8
    下载: 导出CSV

    表  3  CuCe0.75Zr0.25Ox催化剂氢气消耗量

    Table  3  H2 consumptions of different CuCe0.75Zr0.25Ox catalysts

    Catalyst H2 consumption /(μmol·g-1)
    α β γ total
    WCCZ-70 13.0 95.0 37.6 145.6
    ACCZ-70 16.0 50.0 78.0 144.0
    WCCZ-80 14.0 98.6 35.1 147.7
    ACCZ-80 15.0 50.0 70.0 135.0
    下载: 导出CSV
  • [1] ZHONG Z M, SHA Q E, ZHENG J Y, YUAN Z B, GAO Z J, OU J M, ZHENG Z Y, LI C, HUANG Z J. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Sci Total Environ, 2017, 583(1):19-28. http://www.sciencedirect.com/science/article/pii/S0048969716328613
    [2] ZHANG Z X, ZHENG J, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application:A state-of-the-art review[J]. Catal Today, 2016, 264(15):270-278. http://www.sciencedirect.com/science/article/pii/S0920586115007087
    [3] KAMIMURA Y, SHIMOMUR M, ENDO A. Simple template-free synthesis of high surface area mesoporous ceria and its new use as a potential adsorbent for carbon dioxide capture[J]. J Colloid Interf Sci, 2014, 436(15):52-62. http://europepmc.org/abstract/med/25265586
    [4] YE L Q, ZHANG Y L, SONG C C, LI Y Y, JIANG B. A simple sol-gel method to prepare superhydrophilic silica coatings[J]. Mater Lett, 2017, 188(1):316-318. https://www.researchgate.net/publication/308083416_A_simple_sol-gel_method_to_prepare_superhydrophilic_silica_coatings
    [5] MIN J E, LEE Y J, PARK H G, ZHANG C D, JUN K W. Carbon dioxide reforming of methane on Ni-MgO-Al2O3 catalysts prepared by sol-gel method:Effects of Mg/Al ratios[J]. J Ind Eng Chem, 2015, 26(25):375-383. http://www.sciencedirect.com/science/article/pii/S1226086X14006777
    [6] MARCELLO R D, EDUARDO H M N, WANDER L V. Use of a design-of-experiments approach for preparing ceria-zirconia-alumina samples by sol-gel process[J]. Ceram Int, 2016, 42(8):9488-9495. doi: 10.1016/j.ceramint.2016.03.021
    [7] TANG W X, WU X F, LIU G, LI S D, LI D Y, LI W H, CHEN Y F. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. J Rare Earth, 2015, 33(1):62-69. doi: 10.1016/S1002-0721(14)60384-7
    [8] ZHANG X, WU D F. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceram Int, 2016, 42(15):16563-16570. doi: 10.1016/j.ceramint.2016.07.076
    [9] LU H F, KONG X X, HUANG H F, ZHOU Y, CHEN Y F. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015, 32(1):102-107. http://d.wanfangdata.com.cn/Periodical/jes-e201506012
    [10] MANMEET S D, JEFFREY M C. Mechanical and structural property analysis of bacterial cellulose composites[J]. Carbohyd Polym, 2016, 144(25):447-453. http://www.ncbi.nlm.nih.gov/pubmed/27083837
    [11] WANG J Q, LU X K, NG P F, LEE K I, FEI B, XIN J H, WU J Y. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst[J]. J Colloid Interf Sci, 2015, 440(15):32-38. http://www.sciencedirect.com/science/article/pii/S0021979714007991
    [12] ZHANG D Y, QI L M. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes[J]. Chem Commun, 2005, 21:2735-2737. http://www.ncbi.nlm.nih.gov/pubmed/15917937
    [13] ZHANG T, ZHENG Y D, LIU S M, YUE L N, GAO Y, YAO Y. Bacterial cellulose membrane supported three-dimensionally dispersed silver nanoparticles used as membrane electrode for oxygen reduction reaction in phosphate buffered saline[J]. J Electroanal Chem, 2015, 750(1):43-48. http://www.sciencedirect.com/science/article/pii/S157266571500226X
    [14] ZHOU P P, WANG H H, YANG J Z, TANG J, SUN D P, TANG W H. Bacteria cellulose nanofibers supported palladium(0) nanocomposite and its catalysis evaluation in heck reaction[J]. Ind Eng Chem Res, 2012, 51(16):5743-5748. doi: 10.1021/ie300395q
    [15] YANG J Z, TANG W H, LIU X L, CHAO C, LIU J G, SUN D P. Bacterial cellulose-assisted hydrothermal synthesis and catalytic performance of La2CuO4 nanofiber for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(25):10813-10818. doi: 10.1016/j.ijhydene.2013.01.015
    [16] LIU S S, YAN W N, CAO X C, ZHOU Z F, YANG R Z. Bacterial-cellulose-derived carbon nanofiber-supported CoFe2O4 as efficient electrocatalyst for oxygen reduction and evolution reactions[J]. Int J Hydrogen Energy, 2016, 41(11):5351-5360. doi: 10.1016/j.ijhydene.2016.01.121
    [17] FORESTI M L, VÁZQUEZ A, BOURY B. Applications of bacterial cellulose as precursor of carbon and Composites with metal oxide, metal sulfide and metal nanoparticles:A review of recent advances[J]. Carbohyd Polym, 2017, 157(10):447-467. http://www.ncbi.nlm.nih.gov/pubmed/27987949
    [18] LI S M, HAO Q L, ZHAO R Z, LIU D L, DUAN H Z, DOU B J. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chem Eng J, 2016, 285(1):536-543. http://www.sciencedirect.com/science/article/pii/S1385894715013686
    [19] DOU B J, LI S M, LIU D L, ZHAO R Z, LIU J G, HAO Q L, BIN F. Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO2 catalysts[J]. RSC Adv, 2016, 6(59):53852-53859. doi: 10.1039/C6RA06421C
    [20] WANG Y L, ZHANG S N, MAI Y W, WAN Y Z, LIM S H, HE F, HUANG Y. Preparation and Thermo-Mechanical Characterization of Hydroxyapatite/Bacterial Cellulose Nanocomposites[J]. Nanotech Precis Eng, 2009, 7(2):95-101. https://www.researchgate.net/publication/288810559_Preparation_and_Thermo-Mechanical_Characterization_of_HydroxyapatiteBacterial_Cellulose_Nanocomposites
    [21] ZHANG Q L, XU L S, NING P, GU J J, GUAN Q Q. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2014, 317:955-961. doi: 10.1016/j.apsusc.2014.09.017
    [22] ZHOU G L, LAN H, GAO T T, XIE H M. Influence of Ce/Cu ratio on the performance of ordered mesoporous CeCu composite oxide catalysts[J]. Chem Eng J, 2014, 246(15):53-63. http://www.sciencedirect.com/science/article/pii/S1385894714002071
    [23] ZHANG Y W, WEN J, WANG J, PAN D C, SHEN M Q, LU Y F. Synthesis of monodisperse CexZr1-xO2 nanocrystals and the size-dependent enhancement of their properties[J]. Nano Res, 2011, 4(5):494-504. doi: 10.1007/s12274-011-0105-1
    [24] CAI T, HUANG H, DENG W, DAI Q G, LIU W, WANG X Y. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Appl Catal B:Environ, 2015, 166-167:393-405. doi: 10.1016/j.apcatb.2014.10.047
    [25] HE C, YU Y K, YUE L, QIAO N L, LI J J, SHEN Q, YU W J, CHEN J S, HAO Z P. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol[J]. Appl Catal B:Environ, 2014, 147:156-166. doi: 10.1016/j.apcatb.2013.08.039
    [26] RIVAS B, LÓPEZ-FONSECA R, GUTIÉRREZ-ORTIZ MÁ, GUTIÉRREZ-ORTIZ J I. Combustion of chlorinated VOCs using K-CeZrO4 catalysts[J]. Catal Today, 2011, 176(1):470-473. doi: 10.1016/j.cattod.2010.10.044
    [27] YANG P, YANG S S, SHI Z N, MENG Z H, ZHOU R X. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Appl Catal B:Environ, 2015, 162:227-235. doi: 10.1016/j.apcatb.2014.06.048
    [28] LIAO Y N, FU M L, CHEN L M, WU J L, HUANG B C, YE D Q. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catal Today, 2013, 216(1):200-228. http://d.wanfangdata.com.cn/Conference/8734806
    [29] LU H F, ZHOU Y, HAN W F, HUANG H F, CHEN Y F. Promoting effect of ZrO2 carrier on activity and thermal stability of CeO2-based[J]. Appl Catal A:Gen, 2013, 464:101-108. http://www.sciencedirect.com/science/article/pii/S0926860X13003189
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  36
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-23
  • 修回日期:  2017-08-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-11-10

目录

    /

    返回文章
    返回