留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on the reactivity of isopropanol with lignite-related model compound

LEI Zhao JIANG Jing ZHU Gang-li ZHAO Zhi-gang LING Qiang CUI Ping

雷昭, 江静, 朱刚利, 赵志刚, 凌强, 崔平. 褐煤模型化合物与异丙醇进行醇解的反应性研究[J]. 燃料化学学报(中英文), 2016, 44(1): 7-14.
引用本文: 雷昭, 江静, 朱刚利, 赵志刚, 凌强, 崔平. 褐煤模型化合物与异丙醇进行醇解的反应性研究[J]. 燃料化学学报(中英文), 2016, 44(1): 7-14.
LEI Zhao, JIANG Jing, ZHU Gang-li, ZHAO Zhi-gang, LING Qiang, CUI Ping. Investigation on the reactivity of isopropanol with lignite-related model compound[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 7-14.
Citation: LEI Zhao, JIANG Jing, ZHU Gang-li, ZHAO Zhi-gang, LING Qiang, CUI Ping. Investigation on the reactivity of isopropanol with lignite-related model compound[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 7-14.

褐煤模型化合物与异丙醇进行醇解的反应性研究

基金项目: 

The project was supported by the National Natural Science Foundation of China 21176002

The project was supported by the National Natural Science Foundation of China 21476001

详细信息
    通讯作者:

    崔平, Tel: +86-555-2311807, Fax: +86-555-2311552, E-mail: mhgcp@126.com

  • 中图分类号: TQ530

Investigation on the reactivity of isopropanol with lignite-related model compound

Funds: 

The project was supported by the National Natural Science Foundation of China 21176002

The project was supported by the National Natural Science Foundation of China 21476001

More Information
    Corresponding author: CUI Ping, Tel: +86-555-2311807, Fax: +86-555-2311552, E-mail: mhgcp@126.com
  • 摘要: 采用密度泛函理论对褐煤模型化合物与异丙醇醇解的反应特性进行了研究。估算了醇解反应的热力学参数。提出一种将希什菲尔德电荷分布和福井函数相结合的改良方法, 用以确定反应物的初始构型。将线性协同转化方法和二次同步转变法相结合用于搜索过渡态, 并同时对反应物和产物的构型进行优化。经过计算发现, 反应焓随温度升高而降低; 反应过程中出现亲核基团; 异丙醇是常用醇类中最活泼的醇解剂。因此可认为褐煤醇解反应是放热反应, 反应机理为亲核加成机理。
  • Figure  1  Reaction of BOB and isopropanol

    Figure  2  Pathway of estimated Gibbs free energy T0=0 K

    Figure  3  Thermodynamic properties of components

    (a):BOB; (b):isopropanol; (c):BO; (d):phenol

    Figure  4  Plotting for the ln K vs. 1/T

    Figure  5  Hirshfeld charge distribution of reactants

    Figure  6  Charge distribution of reactants using the Fukui function

    Figure  7  Initial configuration of reactants (a) and products (b)

    Figure  8  Transition state

    Figure  9  Calculated energy profiles using TS search tool

    Figure  10  Minimum energy path using TS confirmation tool

    Figure  11  Arrhenius plots for reaction of BOB and different alcohol

    Figure  12  Mechanism of reaction

  • [1] CHATTERJEE K K. Uses of energy, minerals and changing techniques[M]. New Age International (P) Ltd, 2006.
    [2] LI K Z, ZONG M Z, YAN L H. Alkanolysis simulation of lignite-related model compounds using density functional theory[J]. Fuel, 2014, 120: 158-162. doi: 10.1016/j.fuel.2013.12.009
    [3] KUZNETSOV N P, SHARYPOV I V, RUBAYLO I A. Study of Kansk-Atchinsk lignite liquefaction in lower aliphatic alcohols using flow periodical function[J]. Fuel, 1988, 67(12): 1685-1690. doi: 10.1016/0016-2361(88)90217-7
    [4] KUZNETSOV N P, SHARYPOV I V, BEREGOVTSOVA N G. Kinetics and isotope effect of brown coal liquefaction in ethanol[J]. React Kinet Catal Lett, 1989, 40(1): 59-64. doi: 10.1007/BF02235139
    [5] ROSS S D, BLESSING J E. Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol[J]. Fuel, 1979, 58(6): 438-442. doi: 10.1016/0016-2361(79)90085-1
    [6] LEI Z, LIU M, SHUI H. Study on the liquefaction of Shengli lignite with NaOH/methanol[J]. Fuel Process Technol, 2010, 91(7): 783-788. doi: 10.1016/j.fuproc.2010.02.014
    [7] KUZNETSOV P N, SHARYPOV V I, BEREGOVTSOVA N G. Properties of Kansk-Atchinsk lignite during liquefaction in lower alcohols[J]. Fuel, 1990, 69(7): 911-916. doi: 10.1016/0016-2361(90)90241-H
    [8] MONDRAGON F, ITOH H, OUCHI K. Solubility increase of coal by alkylation with various alcohols[J]. Fuel, 1982, 61(11): 1131-1134. doi: 10.1016/0016-2361(82)90198-3
    [9] LU H Y, WEI X Y, YU R. Sequential thermal dissolution of huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011, 25(6): 2741-2745. doi: 10.1021/ef101734f
    [10] ZIEGLER T, AUTSCHBACH J. Theoretical methods of potential use for studies of inorganic reaction mechanisms[J]. Chem Rev, 2005, 105(6): 2695-2722. doi: 10.1021/cr0307188
    [11] GRIMME S. Calculation of frequency dependent optical rotation using density functional response theory[J]. Chem Phys Lett, 2001, 339(5/6): 380-388. http://cat.inist.fr/?aModele=afficheN&cpsidt=14058618
    [12] IE Y, HIROSE T, NAKAMURA H. Nature of electron transport by pyridine-based tripodal anchors: Potential for robust and conductive single-molecule junctions with gold electrodes[J]. J Am Chem Soc, 2011, 133(9): 3014-3022. doi: 10.1021/ja109577f
    [13] GORELSKY S I, LEVER A B P, Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods[J]. J Organomet Chem, 2011, 635(1/2): 187-196. https://www.researchgate.net/publication/256789160_Erratum_to_Electronic_structure_and_spectra_of_ruthenium_diimine_complexes_by_density_functional_theory_and_INDOS_Comparison_of_the_two_methods_J_Organomet_Chem_635_2001_187-196
    [14] GEERLINGS P, AYERS P W, TORO-LABBÉ A. The woodward-offmann rules reinterpreted by conceptual density functional theory[J]. Acc Chem Res, 2012, 45(5): 683-695. doi: 10.1021/ar200192t
    [15] JIANG Z, PAN Q, LI M. Density functional theory study on direct catalytic decomposition of ammonia on Pd (111) surface[J]. Appl Surf Sci, 2013, 292: 494-499. https://www.researchgate.net/publication/261018181_Density_functional_theory_study_on_direct_catalytic_decomposition_of_ammonia_on_Pd_1_1_1_surface
    [16] HUANG J, LIU C, REN L, TONG H, LI W, WU D. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013, 41(6): 657-666. doi: 10.1016/S1872-5813(13)60031-6
    [17] ZHANG X, GAO H, XU H. A density functional theory study of the hydrolysis mechanism of phosphodiester catalyzed by a mononuclear Zn (Ⅱ) complex[J]. J Mol Catal A: Chem, 2012, 368-369: 53-60. http://d.scholar.cnki.net/detail/SJESTEMP_U/SJES14010600488720
    [18] SHIM J G., KIM J H, JHON Y H. DFT calculations on the role of base in the reaction between CO2 and monoethanolamine[J]. Ind Eng Chem Res, 2009, 48(4): 2172-2178. doi: 10.1021/ie800684a
    [19] AZIZPOUR H, SOTUDEH-GHAREBAGH R, MOSTOUFI N. Characterization of regime transition in fluidized beds at high velocities by analysis of vibration signals[J]. Ind Eng Chem Res, 2012, 51(7): 2855-2863. doi: 10.1021/ie200863y
    [20] WANG W J, CAO Y Y. Theoretical study of ethanol partial oxidation for syngas production under cold plasma conditions[J]. J Energy Inst, 2014, 87(2): 89-95. doi: 10.1016/j.joei.2014.03.026
    [21] KYUNGBOOK L, HOONYOUNG J, SEUNGPIL J, JONGGEUN C. Improvement of ensemble smoother with clustered covariance for channelized reservoirs[J]. Energy Explor Exploit, 2013, 31(5): 713-726. doi: 10.1260/0144-5987.31.5.713
    [22] NAJAFI M, MOOD K H, ZAHEDI M. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of chroman derivatives antioxidant action[J]. Comput Theor Chem, 2011, 969(1/3): 1-12. http://www.sciencedirect.com/science/article/pii/S2210271X11002532
    [23] WANG H, SHI X, CHE D. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Appl Therm Eng, 2013, 59(1/2): 490-497. http://gr.xjtu.edu.cn/upload/23094/Thermodynamic+optimization+of+the+operating+parameters.pdf
    [24] ZHOU J, ZONG Z M, CHEN B. The Enrichment and identification of methyl alkanones from thermally soluble shengli lignite[J]. Energy Source Part A, 2013, 35(23): 2218-2224. doi: 10.1080/15567036.2011.652759
    [25] PICCOLO A, SPACCINI R, NIEDER R. Sequestration of a biologically labile organic carbon in soils by humified organic matter[J]. Clim Change, 2004, 67(2): 329-343. doi: 10.1007/s10584-004-1822-1.pdf
    [26] ADLER E. Lignin chemistry-past, present and future[J]. Wood Sci Technol, 1977, 11(3): 169-218. doi: 10.1007/BF00365615
    [27] YU L C, WEI X Y, WANG Y H. Catalytic hydroconversion of extraction residue from Shengli lignite over Fe-S/ZSM-5[J]. Fuel Process Technol, 2014, 126: 131-137. doi: 10.1016/j.fuproc.2014.04.032
    [28] JUG K. A new definition of atomic charges in molecules[J]. Theor Chem Acta, 1973, 31(1): 63-73. doi: 10.1007/BF00527439
    [29] XU X, WANG Y, CHEN Z, BAI L, ZHANG K, YANG S, ZHANG S. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(1): 1-8. doi: 10.1016/S1872-5813(15)60005-6
    [30] LUNDBERG M, BOROWSKI T. Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective[J]. Coord Chem Rev, 2012, 257(1): 277-289. https://www.researchgate.net/publication/256689404_Oxoferryl_species_in_mononuclear_non-heme_iron_enzymes_Biosynthesis_properties_and_reactivity_from_a_theoretical_perspective
    [31] GECE G, BILGIC S. Molecular-level understanding of the inhibition efficiency of some inhibitors of zinc corrosion by quantum chemical approach[J]. Ind Eng Chem Res, 2012, 51(43): 14115-14120. doi: 10.1021/ie302324b
  • 加载中
图(12)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 修回日期:  2015-11-17
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回