留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O2对燃煤烟气中As2O3均相反应生成途径影响研究

闫傲 张月 王春波 白涛 赵斌

闫傲, 张月, 王春波, 白涛, 赵斌. O2对燃煤烟气中As2O3均相反应生成途径影响研究[J]. 燃料化学学报(中英文), 2020, 48(1): 11-17.
引用本文: 闫傲, 张月, 王春波, 白涛, 赵斌. O2对燃煤烟气中As2O3均相反应生成途径影响研究[J]. 燃料化学学报(中英文), 2020, 48(1): 11-17.
YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 11-17.
Citation: YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 11-17.

O2对燃煤烟气中As2O3均相反应生成途径影响研究

基金项目: 

国家自然科学基金 51906070

山西省重点研发计划 201803D31027

中央高校基本科研业务 2018ZD03

中央高校基本科研业务 2019MS093

高效清洁协同利用劣质煤发电的关键基础问题研究 LLEUTS-201702

详细信息
  • 中图分类号: X511

Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas

Funds: 

National Natural Science Foundation of China 51906070

Key Research and Development (R & D) Projects of Shanxi Province 201803D31027

Basic Research Business Fees of Central Colleges and Universities 2018ZD03

Basic Research Business Fees of Central Colleges and Universities 2019MS093

Research on Key Basic Problems of Efficient Cleaning and Synergy Utilization of Inferior Coal Power Generation LLEUTS-201702

More Information
  • 摘要: 应用量子化学密度泛函理论研究了燃煤烟气中As和AsO与O2均相生成As2O3的反应机理。首先计算确定了各反应物、中间体、过渡态和产物的结构和能量,然后运用热力学和动力学方法对As2O3均相生成过程进行分析。结果表明,由As和AsO与O2均相生成As2O3的最大反应能垒分别为32.9和157.2 kJ/mol,在烟气中由As转化为As2O3更为容易进行。在500-1900 K下,各反应的正逆反应速率常数均随温度的提高而增大,但不同反应过程受温度影响的程度不同。As与O2反应生成AsO和AsO2的两个反应过程的平衡常数在所研究的温度范围内均大于105,能完全反应,可以认为是单向反应。AsO与O2反应生成AsO2的过程平衡常数在所研究的温度范围内小于105,反应不完全,转化率低。AsO与AsO2生成As2O3(D3H)构型的平衡常数极低,反应难以进行,而生成As2O3(GAUCHE)构型反应能垒低,可自发进行。
  • 图  1  各基元及小分子结构示意图

    Figure  1  Structure diagram of primitive and small molecules

    图  2  As+O2→AsO+O的反应过程示意图

    Figure  2  Reaction process analysis of As+O2→AsO+O

    图  3  As+O2→AsO2的反应过程示意图

    Figure  3  Reaction process analysis of As+O2→AsO2

    图  4  AsO+O2→AsO2+O的反应过程示意图

    Figure  4  Reaction process analysis of AsO+O2→AsO2+O

    图  5  AsO+AsO2→As2O3的反应过程示意图

    Figure  5  Reaction process analysis of AsO+AsO2→As2O3

    图  6  各反应lgkf随反应温度的变化

    Figure  6  Values of lgkf at different temperatures for each reaction

    图  7  各反应lgkr随反应温度的变化

    Figure  7  Values of lgkr at different temperatures for each reaction

    表  1  键长、键角的计算值及参考值

    Table  1  Calculated and referenced bond lengths and bond angles

    Species Bond length(r/nm) and angle(θ/(°)) Calculated value Referenced value
    O2 r(O-O) 1.225 1.239[18]
    AsO r(As-O) 1.668 1.624[19, 20]
    AsO2 r(As-O) 1.682 1.775[21]
    θ(As-O) 126.212 94.655[21]
    As2O3 (GAUCHE) r(O-As) 1.654 1.610[17]
    r(As-O) 1.862 1.794[17]
    θ(O-As-O) 107.1 106.3[17]
    θ(As-O-As) 128.2 133.8[17]
    As2O3 (D3H) r(As-O) 1.897 1.836[17]
    r(As-As) 2.455 2.375[17]
    θ(As-O-As) 80.6 80.6[18]
    下载: 导出CSV

    表  2  各个反应在不同温度下的平衡常数

    Table  2  Equilibrium constants for each reaction at different temperatures

    Reaction 500 K 700 K 900 K 1100 K 1300 K 1500 K 1700 K 1900 K
    (1) 1.20×1027 1.40×1019 5.47×1014 8.55×1011 9.75×109 3.67×108 2.98×107 4.11×106
    (2) 2.88×1019 9.10×1013 8.00×1010 9.10×108 4.10×107 4.22×106 7.42×105 1.88×105
    (3)TS1 1.63×102 3.94×101 1.79×101 1.08×101 7.64 5.92 4.87 4.17
    (3)TS2 7.20×10-1 3.85×10-1 2.74×10-1 2.21×10-1 1.91×10-1 1.72×10-1 1.59×10-1 1.49×10-1
    (4) 2.47×10-2 7.94×10-3 4.24×10-3 2.85×10-3 2.17×10-3 1.77×10-3 1.52×10-3 1.35×10-3
    下载: 导出CSV
  • [1] WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018, 68:1-28. doi: 10.1016/j.pecs.2018.04.001
    [2] 周文颖.周生贤在重金属污染综合防治"十二五"规划视频工作会议上强调坚决打好重金属污染防治攻坚战切实维护人民群众利益和社会稳定[J].环境保护, 2011, (4):12-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbh201104003

    ZHOU Wen-ying. Zhou Sheng-xian stressed at the video work conference on the "Twelfth Five-Year Plan" for comprehensive prevention and control of heavy metal pollution, resolutely cracking down on heavy metal pollution prevention and control, and effectively safeguarding the interests of the people and social stability[J]. Environ Protect, 2011, (4):12-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbh201104003
    [3] 环境保护部.砷污染防治技术政策[EB/OL]. http://www.mee.gov.cn/gkml/hbb/bgg/201512/t20151228_320552.htm, 2019-10-07.

    Ministry of Environmental Protection. Arsenic pollution prevention and control technology policy[EB/OL]. http://www.mee.gov.cn/gkml/hbb/bgg/201512/t20151228_320552.htm, 2019-10-07.
    [4] 中华人民共和国生态环境部.国家卫生健康委员会关于发布《有毒有害大气污染物名录(2018年)》的公告[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201901/t20190131_691779.html, 2019-01-25.

    Ministry of Ecology and Environment. National Health and Wellness Committee on the publication of the Poisonous and Harmful Air Pollutants List (2018)[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201901/t20190131_691779.html, 2019-01-25.
    [5] SHEN F, LIU J, ZHANG Z, DAI J. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environment Sci Technol, 2015, 49(22):13716-13723. doi: 10.1021/acs.est.5b03626
    [6] WINTER R M, MALLEPALLI R R, HELLEM K P, SZYDLO S W. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994, 101(1/6):45-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102209408951865
    [7] GERMANI M S, ZOLLER W H. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant[J]. Environ Sci Technol, 1988, 22(9):1079-1085. doi: 10.1021/es00174a013
    [8] HIRSCH M E, STERLING R O, HUGGINS F E, HELBLE J J. Speciation of combustion-derived particulate phase arsenic[J]. Environ Eng Sci, 2000, 17(6):315-327. doi: 10.1089/ees.2000.17.315
    [9] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88(3):539-546. doi: 10.1016/j.fuel.2008.09.028
    [10] 刘迎晖, 郑楚光, 游小清, 郭欣.燃煤过程中易挥发有毒痕量元素的相互作用[J].燃烧科学与技术, 2001, 7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007

    LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001, 7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007
    [11] 刘慧敏, 王春波, 黄星智, 张月, 孙鑫.富氧燃烧方式下煤中砷的挥发行为[J].化工学报, 2015, 66(12):5079-5087. http://d.old.wanfangdata.com.cn/Periodical/hgxb201512047

    LIU Hui-min, WANG Chun-bo, HUANG Xing-zhi, ZHANG Yue, SUN Xin. Volatilization of arsenic in coal during oxy-fuel combustion[J]. CIESC J, 2015, 66(12):5079-5087. http://d.old.wanfangdata.com.cn/Periodical/hgxb201512047
    [12] DU X, TANG J, GAO X, CHEN Y, RAN J, ZHANG L. Molecular transformations of arsenic species in the flue gas of typical power plants:A density functional theory study[J]. Energy Fuels, 2016, 30(5):4209-4214. doi: 10.1021/acs.energyfuels.5b03029
    [13] 刘晶, 郑楚光, 邱建荣.燃烧烟气汞反应的量子化学计算方法研究[J].工程热物理学报, 2007, V28(3):519-521. doi: 10.3321/j.issn:0253-231X.2007.03.050

    LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Studies on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007, V28(3):519-521. doi: 10.3321/j.issn:0253-231X.2007.03.050
    [14] AWUAH J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAH B, CATLOW C R A. Density functional theory study of arsenic immobilization by Al(Ⅲ)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016, 18(16):11297-11305. doi: 10.1039/C6CP00190D
    [15] ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82:312-321. doi: 10.1016/j.energy.2015.01.040
    [16] ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011, 964(1/3):283-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=744210536dd8e51a33da2b7a1c9fbe58
    [17] MONAHAN-PENDERGAST M T, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008, 42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
    [18] HUBER K, HERZBERG G. Constants of diatomic molecules in NIST chemistry webbook, NIST standard reference database number 69, ed[J]. PJ Linstrom and WG Mallard, 2001.
    [19] EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of oh with the H2O laser:A Galactic maser pump?[J]. Phys Rev Lett, 1970, 25(4):199-202. doi: 10.1103/PhysRevLett.25.199
    [20] MIZUSHIMA M A. Molecular parameters of OH free radical[J]. Phys Rev A, 1972, 5(1):143-157. doi: 10.1103/PhysRevA.5.143
    [21] MONAHAN-PENDERGAST M T, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008, 42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
    [22] 王泉海, 邱建荣, 温存, 孔凡海, 熊全军, 吴辉.氧燃烧方式下痕量元素形态转化的试验和模拟研究[J].工程热物理学报, 2006, 27(s2):199-202. http://d.old.wanfangdata.com.cn/Periodical/gcrwlxb2006z2052

    WANG Quan-hai, QIU Jian-rong, WEN Cun, KONG Fan-hai, XIONG Quan-jun, WU Hui.A experimental and simulative study on the morphological transformation of the trace element under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006, 27(s2):199-202. http://d.old.wanfangdata.com.cn/Periodical/gcrwlxb2006z2052
    [23] 汤吉昀.燃煤烟气中砷的存在形式及其在分子筛中的吸附规律研究[D].重庆: 重庆大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10611-1017838675.htm

    TANG Ji-yun. The existing form of arsenic species in coal-fired flue gas and its adsorption by zeolite[D]. Chongqing: Chongqing University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10611-1017838675.htm
    [24] 刘晶, 王满辉, 郑楚光, 徐明厚, 李来才, 徐杰英.煤燃烧中汞与含氯气体的反应机理研究[J].工程热物理学报, 2003, V24(1):161-164. doi: 10.3321/j.issn:0253-231X.2003.01.049

    LIU Jing, WANG Man-hui, ZHENG Chu-guang, XU Ming-hou, LI Lai-cai, XU Jie-ying. Reaction mechanism of mercury and gases during coal combustion[J]. J Eng Thermophys, 2003, V24(1):161-164. doi: 10.3321/j.issn:0253-231X.2003.01.049
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  42
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2019-11-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回