留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/ZnO@H-β-P催化剂在合成气制备液化石油气反应中的性能研究

申东明 程世林 韩冰 钟涛 吕鹏 邢闯 盖希坤 吕成学 杨瑞芹

申东明, 程世林, 韩冰, 钟涛, 吕鹏, 邢闯, 盖希坤, 吕成学, 杨瑞芹. Cu/ZnO@H-β-P催化剂在合成气制备液化石油气反应中的性能研究[J]. 燃料化学学报(中英文), 2017, 45(9): 1122-1129.
引用本文: 申东明, 程世林, 韩冰, 钟涛, 吕鹏, 邢闯, 盖希坤, 吕成学, 杨瑞芹. Cu/ZnO@H-β-P催化剂在合成气制备液化石油气反应中的性能研究[J]. 燃料化学学报(中英文), 2017, 45(9): 1122-1129.
SHEN Dong-ming, CHENG Shi-lin, HAN Bing, ZHONG Tao, LÜ Peng, XING Chuang, GAI Xi-kun, LÜ Cheng-xue, YANG Rui-qin. Research on the performance of Cu/ZnO@H-β-P catalyst in the reaction of LPG preparation from syngas[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1122-1129.
Citation: SHEN Dong-ming, CHENG Shi-lin, HAN Bing, ZHONG Tao, LÜ Peng, XING Chuang, GAI Xi-kun, LÜ Cheng-xue, YANG Rui-qin. Research on the performance of Cu/ZnO@H-β-P catalyst in the reaction of LPG preparation from syngas[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1122-1129.

Cu/ZnO@H-β-P催化剂在合成气制备液化石油气反应中的性能研究

基金项目: 

国家自然科学基金 21528302

浙江省自然科学基金 LQ16B060002

国家级大学生创新训练计划 201611057013

详细信息
  • 中图分类号: O643.36;TQ426.94

Research on the performance of Cu/ZnO@H-β-P catalyst in the reaction of LPG preparation from syngas

Funds: 

the National Natural Science Foundation of China 21528302

Zhejiang Province Natural Science Foundation LQ16B060002

the National Undergraduate Training Programs for Innovation and Entrepreneurship 201611057013

More Information
  • 摘要: 采用共沉淀法制备Cu/ZnO催化剂、水热合成法制备H-β分子筛、通过物理包膜法制备了具有核壳结构的Cu/ZnO@H-β-P催化剂,并用于合成气制备液化石油气(LPG)反应。通过XRD、NH3-TPD、BET和SEM-EDS等手段对催化剂进行了表征,利用固定床连续反应装置对催化剂进行了活性评价。结果表明,Cu/ZnO@H-β-P催化剂是具有中孔的核壳结构材料,其协同作用打破了原有的热力学平衡,促进了甲醇→DME→LPG串联反应的连续进行。与物理混合的Mix-Cu/ZnO-H-β催化剂相比,Cu/ZnO@H-β-P催化剂的CO转化率和LPG选择性更高,空速和反应温度对催化剂活性影响明显,最佳空速和反应温度分别为2 400 h-1和350℃。使用Cu/ZnO@H-β-P催化剂在最佳条件下进行合成气制备LPG反应,CO转化率达到了57.22%,LPG选择性达到了60.52%。
  • 图  1  核壳机构催化剂反应原理示意图

    Figure  1  Principle diagram of core shell structure catalyst

    图  2  不同催化剂的XRD谱图

    Figure  2  XRD patterns of the catalysts

    图  6  催化剂表面及切面的SEM-EDS分析

    Figure  6  Surface SEM (a) and EDS (b) analysis cross-section SEM (c) and EDS (d) analysis of the Cu/ZnO@H-β-P catalyst

    图  3  不同催化剂的N2吸附-脱附等温曲线

    Figure  3  N2 adsorption-desorption isotherms of the catalysts

    图  4  不同催化剂的孔径分布

    Figure  4  Pore size distribution of the catalysts

    图  5  不同催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD patterns of the catalysts

    图  7  Mix-Cu/ZnO-H-β和Cu/ZnO-H-β-P的CO转化率及产物分布(a)及反应器内催化剂状态(b)

    Figure  7  CO conversion and product selectivity over Mix-Cu/ZnO-H-βand Cu/ZnO-H-β-P catalysts

    (a) and different catalysts situation in the reaction (b)

    图  8  温度对催化剂反应活性的影响

    Figure  8  Effect of temperature on reactions

    : CO conversion; : CO2 selectivity; : LPG in HCs; : HC selectivity; : CH4 selectivity

    图  9  空速对催化剂反应活性的影响

    Figure  9  Effect of space velocity on the reaction performance

    : CO conversion; : CO2 selectivity; : LPG in HCs; : HC selectivity; : CH4 in HCs

    图  10  催化剂的稳定性能

    Figure  10  Stability of the catalysts

    表  1  催化剂的比表面积与孔体积

    Table  1  Surface areas and pore volumes of the catalysts

    Catalyst Surface area A/(m2·g-1) Pore volume v/(cm3·g-1)
    Cu/ZnO 71 0.19
    Cu/ZnO@H-β-P 191 0.29
    Mix-Cu/ZnO-H-β 131 0.26
    H-β 445 0.56
    下载: 导出CSV
  • [1] 王立敏.中国LPG产业迎来第二个春天"2015年第20届中国LPG国际会议"综述[J].国际石油经济, 2015, 23(4):77-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201504014.htm

    WANG Li-min. A review for the second spring of China's LPG industry "The 20th international conference on China's LPG"[J]. Int Petrol Econ, 2015, 23(4):77-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201504014.htm
    [2] 侯庆贺, 杨靖华.液化石油气资源及其综合利用[J].当代化工, 2010, 39(3):287-289. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201003022.htm

    HOU Qing-he, YANG Jing-hua. Comprehensive utilization and source of liquified petroleum gas[J]. Contemp Chem Ind, 2010, 39(3):287-289. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201003022.htm
    [3] GALVIS H M, JONG K P D. Catalysts for production of lower olefins from synthesis aas:a review[J]. ACS Catalysis, 2013, 3(9):2130-2149. doi: 10.1021/cs4003436
    [4] CHEN Y P, XU Y M, CHENG D G, CHEN Y C, CHEN F Q, LU X Y, HUANG Y P, NI S B. C2-C4 hydrocarbons synthesis from syngas over CuO-ZnO-Al2O3/SAPO-34 bifunctional catalyst[J]. J Chem Technol Biotechnol, 2015, 90(3):415-422. doi: 10.1002/jctb.2015.90.issue-3
    [5] 马现刚, 葛庆杰, 方传艳, 马俊国, 徐恒泳.合成气制液化石油气复合催化剂的性能[J].催化学报, 2010, 31(12):1501-1506. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201012016.htm

    MA Xian-gang, GE Qing-jie, FANG Chuan-yan, MA Jun-guo, XU Heng-yong. Hybrid catalysts for liquefied petroleum gas synthesis from syngas[J]. Chin J Catal, 2010, 31(12):1501-1506. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201012016.htm
    [6] FLORES J H, SILVA M I P D. Influence of the preparation method on hybrid catalysts CuO-ZnO-Al2O3 and H-ferrierite for syngas transformation to hydrocarbons via methanol[J]. Catal Lett, 2016, 146(8):1505-1516. doi: 10.1007/s10562-016-1771-0
    [7] LI C M, YUAN X D, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A, 2014, 475:155-160. doi: 10.1016/j.apcata.2014.01.025
    [8] FUJIWARA M, SAKURAI H, SHIOKAWA K, LIZUKA Y. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and Hβ zeolite using two-stage reactor system under low pressure[J]. Catal Today, 2015, 242:255-260. doi: 10.1016/j.cattod.2014.04.032
    [9] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 128(15):4803-4806. doi: 10.1002/ange.201601208
    [10] LI J J, PAN X L, BAO X H. Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst[J]. Chin J Catal, 2015, 36(7):1131-1135. doi: 10.1016/S1872-2067(14)60297-7
    [11] DAVIS B H. Fischer-Tropsch Synthesis:Reaction mechanisms for iron catalysts[J]. Catal Today, 2009, 141(1/2):25-33.
    [12] TSUBAKI N, FUJIMOTO K. Product control in Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2000, 62(2/3):173-186. https://www.jstage.jst.go.jp/article/sekiyu/2008f/0/2008f_0_104/_article
    [13] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:tuning the product selectivity[J]. ChemCatChem, 2010, 2(9):1030-1058. doi: 10.1002/cctc.201000071
    [14] MA X G, GE Q J, MA J G, XU H Y. Synthesis of LPG via DME from syngas in two-stage reaction system[J]. Fuel Process Technol, 2013, 109:1-6. doi: 10.1016/j.fuproc.2013.01.002
    [15] GE Q J, LIAN Y, YUAN X D, LI X H, FUJIMOTO K. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG[J]. Catal Commun, 2008, 9(2):256-261. doi: 10.1016/j.catcom.2007.06.011
    [16] ZHANG Q W, LI X H, ASAMI K, ASAOKA S, FUJIMOTO K. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite[J]. Catal Today, 2005, 104(1):30-36. doi: 10.1016/j.cattod.2005.03.032
    [17] LI X G, HE J J, MENG M, YONEYAMA Y, TSUBAKI N. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity[J]. J Catal, 2009, 265(1):26-34. doi: 10.1016/j.jcat.2009.04.009
    [18] QI G X, ZHENG X M, FEI J H, HOU Z Y. A novel catalyst for DME synthesis from CO hydrogenation 1. Activity, structure and surface properties[J]. J Mor Catal A:Chem, 2001, 176(1/2):195-203.
    [19] MORADI G R, NOSRATI S, YARIPOR F. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas[J]. Catal Commun, 2007, 8(3):598-606. doi: 10.1016/j.catcom.2006.08.023
    [20] XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res, 2013, 52(33):11510-11515. doi: 10.1021/ie400909u
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  42
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-10
  • 修回日期:  2017-06-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回