留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水蒸气和α-Fe2O3对铈改性半焦脱除单质汞的影响研究

赵可 牛庆欣 王力 张华伟

赵可, 牛庆欣, 王力, 张华伟. 水蒸气和α-Fe2O3对铈改性半焦脱除单质汞的影响研究[J]. 燃料化学学报(中英文), 2017, 45(3): 378-384.
引用本文: 赵可, 牛庆欣, 王力, 张华伟. 水蒸气和α-Fe2O3对铈改性半焦脱除单质汞的影响研究[J]. 燃料化学学报(中英文), 2017, 45(3): 378-384.
ZHAO Ke, NIU Qing-xin, WANG Li, ZHANG Hua-wei. Effect of water vapor and α-Fe2O3 on elemental mercury removal performance over cerium oxide modified semi coke[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 378-384.
Citation: ZHAO Ke, NIU Qing-xin, WANG Li, ZHANG Hua-wei. Effect of water vapor and α-Fe2O3 on elemental mercury removal performance over cerium oxide modified semi coke[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 378-384.

水蒸气和α-Fe2O3对铈改性半焦脱除单质汞的影响研究

基金项目: 

国家自然科学基金 51406107

国家自然科学基金 21276146

山东省杰出青年基金 JQ201612

详细信息
    通讯作者:

    张华伟, E-mail:sdkdzhw@163.com

  • 中图分类号: TQ534.9

Effect of water vapor and α-Fe2O3 on elemental mercury removal performance over cerium oxide modified semi coke

Funds: 

the Natural Science Foundation of China 51406107

the Natural Science Foundation of China 21276146

Shandong Fund for Distinguished Young Scholars JQ201612

  • 摘要: 采用浸渍法制备了铈改性半焦吸附剂(Ce/SC),在小型固定床反应器上考察了水蒸气和α-Fe2O3对Ce/SC脱除Hg0性能的影响,并利用X射线衍射、H2程序升温还原、X射线光电子能谱等分析手段对其机理进行了探究。结果表明,水蒸气会明显抑制Ce/SC对单质汞的脱除效率,原因是H2O分子在活性组分CeO2表面发生解离,部分晶格氧转化成Ce-OH官能团,从而导致其氧化活性的降低;α-Fe2O3的加入对Ce/SC的脱汞性能无显著影响;当水蒸气和α-Fe2O3同时存在时,Ce/SC的脱汞效率虽然有所降低,但是其降低幅度明显低于水蒸气单独作用时的情况,这主要是因为水蒸气与α-Fe2O3作用增加了其表面化学吸附氧的含量,提高了α-Fe2O3的氧化活性,促进单质汞的氧化和脱除。
  • 图  1  单质汞吸附实验装置示意图

    Figure  1  Experimental device for the adsorption of elemental mercury

    图  2  水蒸气对Ce/SC脱汞性能的影响

    Figure  2  Effect of water vapor on the adsorption of elemental mercury performance over Ce/SC

    图  3  水蒸气对SC和CeO2脱汞性能的影响

    Figure  3  Effect of water vapor on adsorption of elemental mercury performance over SC and CeO2

    图  4  SC、Ce/SC和Ce/SC+10%H2O的XRD谱图

    Figure  4  XRD spectra of SC, Ce/SC and Ce/SC+10%H2O

    图  5  CeO2和CeO2+10%H2O的H2-TPR谱图

    Figure  5  H2-TPR spectra of CeO2 and CeO2+10%H2O

    图  6  CeO2和CeO2+10%H2O的O 1s XPS谱图

    Figure  6  O 1s XPS spectra of CeO2 and CeO2+10%H2O

    图  7  水蒸气和α-Fe2O3对Ce/SC脱汞性能的影响

    Figure  7  Effect of water vapor and α-Fe2O3 on adsorption of elemental mercury performance by Ce/SC

    图  8  水蒸气对α-Fe2O3脱汞性能的影响

    Figure  8  Effect of water vapor on adsorption of elemental mercury performance by α-Fe2O3

    图  9  水蒸气处理前后α-Fe2O3的XRD谱图

    Figure  9  XRD spectra of α-Fe2O3 before and after water vapor treatment

    图  10  水蒸气处理前后α-Fe2O3的H2-TPR谱图

    Figure  10  H2-TPR spectra of α-Fe2O3 before and after water vapor treatment

    图  11  水蒸气处理前后α-Fe2O3的O 1s XPS谱图

    Figure  11  O 1s XPS spectra of α-Fe2O3 before and after water vapor treatment

    表  1  CeO2和CeO2+10%H2O样品中各种形态O的相对含量

    Table  1  Relative contents of O in different forms of CeO2 and CeO2+10%H2O

    Sample Relative content w/%
    Ce-OH H2O O2-
    Pure CeO2 20.85 10.94 68.21
    CeO2+10%H2O 39.99 14.18 45.83
    下载: 导出CSV

    表  2  水蒸气处理前后α-Fe2O3中各种形态O的相对含量

    Table  2  Relative contents of O in different forms of α-Fe2O3 before and after water vapor treatment

    Sample Relative content w/%
    Oβ Oα Oγ
    Fe2O3-0%H2O 23.84 32.07 44.09
    Fe2O3-10%H2O 44.06 19.72 36.22
    下载: 导出CSV
  • [1] SHEWCHUK S R, AZARGOHAR R, DALAIA K. Elemental mercury capture using activated carbon:A review[J]. J Environ Anal Toxicol, 2016, 6(4):1-10.
    [2] XU H, SHEN B X, YUAN P, LU F J, TIAN L H, ZHANG X. The adsorption mechanism of elemental mercury by HNO3-modified bamboo char[J]. Fuel Process Technol, 2016, 154:139-146. doi: 10.1016/j.fuproc.2016.08.025
    [3] XU Y, ZHONG Q, LIU X. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015, 283:252-259. doi: 10.1016/j.jhazmat.2014.09.034
    [4] 李敏, 王力, 陈江艳, 姜艳岭, 王文军.溴化铵改性膨润土脱除气态单质汞的特性及机理分析[J].燃料化学学报, 2014, 42(10):1266-1272. doi: 10.1016/S1872-5813(14)60049-9

    LI Min, WANG Li, CHEN Jiang-yan, JANG Yan-ling, WANG Wen-jun. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal[J]. J Fuel Chem Technol, 2014, 42(10):1266-1272. doi: 10.1016/S1872-5813(14)60049-9
    [5] HE J F, DUAN C L, LEI M Z, ZHU X M. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology[J]. Environ Technol, 2016, 37(1):1-41. doi: 10.1080/09593330.2015.1058860
    [6] JIANG G B, SHI J B, FENG X B. Mercury pollution in China[J]. Environ Sci Technol, 2006, 40(12):3672-3678. doi: 10.1021/es062707c
    [7] ZHOU R, CAO Y, YAN S R, FANK N. Rare earth (Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane[J]. Appl Catal A:Gen, 2002, 236:103-111. doi: 10.1016/S0926-860X(02)00281-8
    [8] REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPStechniques[J]. J Phys Chem B, 2003, 107(22):5162-5167. doi: 10.1021/jp0344601
    [9] LI H L, WU C Y, LI Y, ZHANG J Y. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Scitechnol, 2011, 45(17):7394-7400. doi: 10.1021/es2007808
    [10] HE C, SHEN B X, CHEN J H, CAI J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J]. Environ Sci Technol, 2014, 48(14):7891-7898. doi: 10.1021/es5007719
    [11] SCALA F, CIMINO S. Elemental mercury capture and oxidation by a regenerablemanganese-based sorbent:The effect of gas composition[J]. Chem Eng J, 2015, 278:134-139. doi: 10.1016/j.cej.2014.11.094
    [12] WANG F M, LI G L, SHEN B X, WANG Y Y, HE C. Mercury removal over the vanadia-titania catalyst in CO2-enriched conditions[J]. Chem Eng J, 2015, 263:356-363. doi: 10.1016/j.cej.2014.10.091
    [13] SHEN B X, CHEN J H, YUE S Y. Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine[J]. Microporous Mesoporous Mater, 2015, 203:216-223. doi: 10.1016/j.micromeso.2014.10.030
    [14] MA J F, LI C T, ZHAO L K, ZHANG J, SONG J Y, ZENG G M, ZHANG X, XIE Y. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid[J]. Appl Surf Sci, 2015, 329:292-300. doi: 10.1016/j.apsusc.2014.11.090
    [15] WEN X Y, LI C T, FAN X P, GAO H L, ZHANG W, CHEN L, ZENG G M, ZHAO Y P. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3[J]. Energy Fuels, 2011, 25(7):2939-2944. doi: 10.1021/ef200144j
    [16] HOU W H, ZHOU J S, YOU S L, GAO X, LUO Z Y. Elemental mercury capture from syngas by novel high-temperature sorbent based on Pd-Ce binary metal oxides[J]. Ind Eng Chem Res, 2015, 54(14):3678-3684. doi: 10.1021/ie504447j
    [17] TAO S S, LI C T, FAN X P, ZENG G M, LU P, ZHANG X, WEN Q B, ZHAO W W, LUO D Q, FAN C Z. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chem Eng J, 2012, 210:547-556. doi: 10.1016/j.cej.2012.09.028
    [18] 李志超, 段钰锋, 王运军, 黄治军, 孟素丽, 沈解忠. 300 MW燃煤电厂ESP和WFGD对烟气汞的脱除特性[J].燃料化学学报, 2013, 41(4):491-498. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18171.shtml

    LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. Mercury removal by ESP and WFGD in a 300 MW coal-fired power plant[J]. J Fuel Chem Technol, 2013, 41(4):491-498. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18171.shtml
    [19] 周劲松, 张义, 侯文慧, 齐攀, 高翔, 骆仲泱.模拟煤气中氧化铁吸附单质汞的影响因素[J].燃烧科学与技术, 2013, 19(4):287-292. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201304001.htm

    ZHOU Jin-song, ZHANG Yi, HOU Wen-hui, QI Pan, GAO Xiang, LUO Zhong-yang. Elemental mercury removal by iron oxide adsorbent in coal derived fuel gas[J]. J Combust Sci Technol, 2013, 19(4):287-292. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201304001.htm
    [20] GHORISHI S B, CHUN W L, WOJCIECH S J, JAMS D K. Effects of fly ash transition metal content and flue gas HCl/SO2ratio on mercury speciation in waste combustion[J]. Environ Eng Sci, 2005, 22(2):221-231. doi: 10.1089/ees.2005.22.221
    [21] KEVIN C G, CHRISTOPEHR J Z, JAMES E T, RICHARD L Z, GRANT E D. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol, 2005, 86(4):429-448. doi: 10.1016/j.fuproc.2004.03.003
    [22] KONG F H, QIU J R, LIU H, ZHAO R, AI Z H. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. J Environ Sci-China, 2011, 23(4):699-704. doi: 10.1016/S1001-0742(10)60438-X
    [23] 张华伟, 陈江艳, 赵可, 牛庆欣, 王力. Mn/Ce掺杂改性半焦对模拟煤气中单质汞的脱除性能研究[J].燃料化学学报, 2016, 44(4):394-400. doi: 10.1016/S1872-5813(16)30020-2

    ZHANG Hua-wei, CHEN Jiang-yan, ZHAO Ke, NIU Qing-xin, WANG Li. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping[J]. J Fuel Chem Technol, 2016, 44(4):394-400. doi: 10.1016/S1872-5813(16)30020-2
    [24] XIE Y, LI C T, ZHAO L K, ZHANG J, ZENG G M, ZHANG X, ZHANG W, TAO S S. Experimental study on Hg0, removal from flue gas over columnar MnOx-CeO2/activated coke[J]. Appl Surf Sci, 2015, 333:59-67. doi: 10.1016/j.apsusc.2015.01.234
    [25] PAPPACENA A, BOARO M, ARMELAO L, LLORCA J, TROVARELLI A. Water splitting reaction on Ce0.15Zr0.85O2 driven by surface heterogeneity[J]. Catal Sci Technol, 2015, 6(2):399-403.
    [26] RERRY G K, HE J, THIELS W, PINTO N G, SMMIRNIOTIS P G. Sulfur-tolerant Mn-Ce-Ti sorbents for elemental mercury removal from flue gas:Mechanistic investigation by XPS[J]. J Phys Chem C, 2015, 119(16):8634-8644.. doi: 10.1021/jp512185s
    [27] SHAN W J, GUO H J, LIU C, WANG X N. Controllable preparation of CeO2, nanostructure materials and their catalytic activity[J]. J Rare Earth, 2012, 30(7):665-669. doi: 10.1016/S1002-0721(12)60109-4
    [28] KONSOLAKIS M, IOAKIMIDIS Z, KRAIA T, MARNELLOS G E. Hydrogen production by ethanol steam reforming (ESR) over CeO2 supported transition metal (Fe, Co, Ni, Cu) catalysts:Insight into the structure-activity relationship[J]. Catalysts, 2016, 6(3):39. doi: 10.3390/catal6030039
    [29] MOLINARI M, PARKER S C, SAYLE D C, ISLAM M. Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria[J]. J Phys Chem C, 2012, 116(12):7073-7082. doi: 10.1021/jp300576b
    [30] FRONZI M, PICCININ S, DELLEY B, TRAVERSA E, STAMPFL C. Water adsorption on the stoichiometric and reduced CeO2(111) surface:A first-principles investigation[J]. Phys Chem Chem Phys, 2009, 11(40):9188-9199. doi: 10.1039/b901831j
    [31] LI S Y, JIA M J, GAO J, WU P, YANG M L, HUANG S H, DOU X W, YANG Y, ZHANG W X. Infrared studies of the promoting role of water on the reactivity of Pt/FeOx catalyst in low-temperature oxidation of carbon monoxide[J]. J Phys Chem C, 2015, 119(5):2483-2490.
    [32] LI C, ZHANG J H, WU J, ZHANG X B, CHEN X T, LI C, ZHANG J, ZHANG L L. Experimental study of the fly ash iron morphology effect on flue gas mercury removal[J]. Adv Mater Res, 2013, 864:1513-1518. https://www.researchgate.net/publication/272615269_Experimental_Study_of_the_Fly_Ash_Iron_Morphology_Effect_on_Flue_Gas_Mercury_Removal
    [33] GU Z H, LI K Z, WANG H, WEI Y G, YAN D X, QIAO T. Syngas production from methane over CeO2-Fe2O3, mixed oxides using a chemical-looping method[J]. Kinet Catal, 2013, 54(3):326-333. doi: 10.1134/S002315841303004X
    [34] WANG Y, LI C T, ZHAO L K, XIE Y E, ZHANG X, ZENG G M, WU H Y, ZHANG J. Study on the removal of elemental mercury from simulated flue gas by Fe2O3-CeO2/AC at low temperature[J]. Environ Sci Pollut R, 2016, 23(6):1-12.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  38
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-01-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回