留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁酸锌(311)表面结构的密度泛函理论研究

牛晓晨 曹东波 张斌 刘星辰 温晓东 覃勇 王建国

牛晓晨, 曹东波, 张斌, 刘星辰, 温晓东, 覃勇, 王建国. 铁酸锌(311)表面结构的密度泛函理论研究[J]. 燃料化学学报(中英文), 2018, 46(8): 985-991.
引用本文: 牛晓晨, 曹东波, 张斌, 刘星辰, 温晓东, 覃勇, 王建国. 铁酸锌(311)表面结构的密度泛函理论研究[J]. 燃料化学学报(中英文), 2018, 46(8): 985-991.
NIU Xiao-chen, CAO Dong-bo, ZHANG Bin, LIU Xing-chen, WEN Xiao-dong, QIN Yong, WANG Jian-guo. Surface structure of zinc ferrite (311)-A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 985-991.
Citation: NIU Xiao-chen, CAO Dong-bo, ZHANG Bin, LIU Xing-chen, WEN Xiao-dong, QIN Yong, WANG Jian-guo. Surface structure of zinc ferrite (311)-A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 985-991.

铁酸锌(311)表面结构的密度泛函理论研究

基金项目: 

国家自然科学基金 21473229

国家自然科学基金 91545121

国家自然科学基金 21273266

详细信息
  • 中图分类号: O643

Surface structure of zinc ferrite (311)-A density functional theory study

Funds: 

the National Natural Science Foundation of China 21473229

the National Natural Science Foundation of China 91545121

the National Natural Science Foundation of China 21273266

More Information
  • 摘要: 利用原子层沉积技术(ALD)合成了铁酸锌(ZnFe2O4)纳米颗粒。基于密度泛函理论和原子热力学的方法, 计算了ZnFe2O4的结构、磁性和电子性质, 研究了ZnFe2O4(311)面六种不同终结面的稳定性与氧化学势和锌化学势的关系。结果表明, ZnFe2O4是具有正尖晶石结构的半导体, 禁带宽度为1.91 eV, 且具有反铁磁性。在ZnFe2O4可以稳定存在的化学势范围内, O1、O2、Fe2、Zn2四种终结面可以稳定存在, 且具有不同的稳定区间。在富锌条件下(△μZn=0 eV), O1终结面在大部分O化学势范围内最稳定, 在贫锌条件下(△μZn=-3.88 eV), O2终结面变得最稳定。
  • 图  1  ZnFe2O4(311)(1×1)面的不同终结面的结构模型(白色、黑色和灰色的球分别代表Zn、Fe和O原子)

    Figure  1  Structural models of each termination for (311) surface of ZnFe2O4 White, black and grey balls represent Zn, Fe and O atoms, respectively

    图  2  ZnFe2O4样品的XRD谱图

    Figure  2  XRD patterns of ZnFe2O4

    图  3  ZnFe2O4样品的TEM(a)和HRTEM((b)-(d))照片

    Figure  3  TEM (a) and HRTEM ((b)-(d)) images of ZnFe2O4

    图  4  正尖晶石结构ZnFe2O4的态密度图(a)和能带结构(b)(黑线表示上旋, 灰线表示下旋)

    Figure  4  DOS (a) and band structure (b) of ZnFe2O4 the black lines are majority spin, while the grey lines are minority spin

    图  5  ZnFe2O4(311)(1×1)面的稳定区域示意图

    Figure  5  Stability diagram of the ZnFe2O4 (311) (1×1) surface

    图  6  ΔμZn= 0 eV时ZnFe2O4(311)(1×1)面的表面能

    Figure  6  Surface free energy of the ZnFe2O4 (311) (1×1) surface under the condition of ΔμZn= 0 eV

    图  7  ΔμZn= -3.88 eV时ZnFe2O4 (311)(1×1)面的表面能

    Figure  7  Free energy of the ZnFe2O4 (311) (1×1) surface under the condition of ΔμZn= -3.88 eV

    表  1  不同ZnFe2O4构型相对于最稳定构型的能量(ΔEa)和晶格常数

    Table  1  The calculated energies relative to the lowest-energy configuration (ΔEa) and calculated lattice constants (acal) for different ZnFe2O4 configurations

    Inversion parameter Configuration ΔE/eV acal/nm aexp/nm
    (Zn2)[Fe4↑]O8 0.0706 0.851
    α=0 (Zn2)[Fe↓Fe3↑]O8 0.0161 0.851
    (Zn2)[Fe2↓Fe2↑]O8 0.0000 0.851
    α=0.5 (Zn Fe↑)[Zn2Fe3↑]O8 0.9222 - ~0.852
    (Zn Fe↓)[Zn2Fe3↑]O8 0.4464 -
    α=1 (Fe2↑)[Zn2Fe2↑]O8 1.4089 -
    (Fe2↓)[Zn2Fe2↑]O8 0.6582
    aE=E-E0, E0((Zn2)[Fe2↓Fe2↑]O8)=-86.0163 eV
    下载: 导出CSV
  • [1] TECHALERTMANEE T, CHANCHAROENRITH S, NAMKAJORN M, KIATISEVI S, CHAICHAROENWIMOLKUL L, SOMSOOK E.Facile synthesis of zinc-iron mixed oxide/carbon nanocomposites as nanocatalysts for the degration of methylene blue[J].Mater Lett, 2015, 145:224-228. doi: 10.1016/j.matlet.2015.01.079
    [2] 曹锋, 李新勇, 曲振平, 陈国华.铁酸锌纳米晶的合成及其催化脱色性能研究[J].环境污染与防治, 2006, 28(12):891-894. doi: 10.3969/j.issn.1001-3865.2006.12.004

    CAO Feng, LI Xin-yong, QU Zhen-guo, CHEN Guo-hua.Nanocrystalline ZnFe2O4 catalyst for decolorization of acid orange Ⅱ[J].Environ Poll Control, 2006, 28(12):891-894. doi: 10.3969/j.issn.1001-3865.2006.12.004
    [3] SHINDE M M, SAWANT M R.Liquid phase Friedel-Crafts alkylation over mixed metal oxide catalyst[J].J Chin Chem Soc, 2003, 50(6):1221-1226. doi: 10.1002/jccs.v50.6
    [4] LEE H, JUNG J C, KIM H, CHUNG Y M, KIM T J, LEE S J, OH S H, KIM Y S, SONG I K.Effect of pH in the preparation of ZnFe2O4 for oxidative dehydrogenation of n-butene to 1, 3-butadiene:Correlation between catalytic performance and surface acidity of ZnFe2O4[J].Catal Commun, 2008, 9(6):1137-1142. doi: 10.1016/j.catcom.2007.10.023
    [5] SUN M Y, CHEN Y J, TIAN G H, WU A P, YAN H J, FU H G.Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction[J].Electrochim Acta, 2016, 190:186-192. doi: 10.1016/j.electacta.2015.12.166
    [6] LIN S, ZHANG D, PAN X L, DU Y X, LIU J, FAN D Y, WANG Y G, BI K, LEI M.New route to monodispersed zinc ferrite nanoparticles and its excellent oxygen reduction reaction property[J].J Nanosci Nanotechnol, 2017, 17(5):2917-2922. doi: 10.1166/jnn.2017.13039
    [7] DAS P, DUTTA A, BHAUMIK A, MUKHOPADHYAY C.Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4H-pyrans:Further conversion to 1, 4-DHPs and report of functional group interconversion from amide to ester[J].Green Chem, 2014, 16(3):1426-1435. doi: 10.1039/C3GC42095G
    [8] SOLIMAN S, ELFALAKY A, FECHER G H, CLAUDIA F.Electronic structure calculations for ZnFe2O4[J].Phys Rev B, 2011, 83(8):085205(1/6). https://www.researchgate.net/publication/47361266_Structure_Optimization_and_Electronic_Structure_of_the_SrAl2O4Eu2_Persistent_Luminescence_Material_by_DFT_Calculations
    [9] CHENG C.Long-range antiferromagnetic interactions in ZnFe2O4 and CdFe2O4:Density functional theory calculations[J].Phys Rev B, 2008, 78(13):132403(1/4).
    [10] YAO J H, LI Y W, LI X H, LE S R.Density functional theory investigations on the structure and electronic properties of normal spinel ZnFe2O4[J].Integr Ferroelectr, 2013, 145(1):17-23. doi: 10.1080/10584587.2013.788310
    [11] WANG X Q, CHEN L, FAN Q B, FAN J X, XU G L, YAN M H, HENDERSON M J, COURTOIS J, KUN X.Lactoferrin-assisted synthesis of zinc ferrite nanocrystal:Its magnetic performance and photocatalytic activity[J].J Alloys Compd, 2015, 652:132-138. doi: 10.1016/j.jallcom.2015.08.228
    [12] SUN M Y, CHEN Y J, TIAN G H, WU A P, YAN H J, FU H G.Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction[J].Electrochim Acta, 2016, 190:186-192. doi: 10.1016/j.electacta.2015.12.166
    [13] YAO Y J, QIN J C, CHEN H, WEI F Y, LIU X T, WANG J L, WANG S B.One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants[J].J Hazard Mater, 2015, 291:28-37. doi: 10.1016/j.jhazmat.2015.02.042
    [14] LU D B, ZHANG Y, LIN S X, WANG L T, WANG C M.Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes[J].J Alloys Compd, 2013, 579(4):336-342. doi: 10.1007%2Fs10854-016-6151-4
    [15] DOM R, CHARY A, SADANANDA S, RAGHAVAN H, NEHA Y, BORSE P H.Solar hydrogen generation from spinel ZnFe2O4 photocatalyst:effect of synthesis methods[J].Int J Energy Res, 2015, 39(10):1378-1390. doi: 10.1002/er.v39.10
    [16] ZHANG J K, CHEN C Q, YAN W J, DUAN F F, ZHANG B, GAO Z, QIN Y.Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane[J].Catal Sci Technol, 2017, 6(7):2112-2119. https://www.researchgate.net/publication/283478790_Ni_nanoparticles_supported_on_CNTs_with_excellent_activity_produced_by_atomic_layer_deposition_for_hydrogen_generation_from_hydrolysis_of_ammonia_borane
    [17] QIN Y, ZHANG Z K, CUI Z L.Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate[J].Carbon, 2003, 41(15):3072-3074. doi: 10.1016/S0008-6223(03)00435-4
    [18] KRESSE G, HAFNER J.Ab initio molecular dynamics for liquid metals[J].Phys Rev B:Condens Matter Mater Phys, 1993, 47(1):558-561. doi: 10.1103/PhysRevB.47.558
    [19] BLÖCHL P E.Projector augmented-wave method[J].Phys Rev B:Condens Matter Mater Phys, 1994, 50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953
    [20] DUDAREV S L, BOTTON G A, SAVRASOV S Y, HUMPHREYS C J, SUTTON A P.Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study[J].Phys Rev B:Condens Matter Mater Phys, 1998, 57(3):1505. doi: 10.1103/PhysRevB.57.1505
    [21] XIE Y, YU H T, ZHANG G X, FU H G, SUN J Z.First-principles investigation of stability and structural properties of the BaTiO3 (110) polar surface[J].J Phys Chem C, 2007, 111(17):6343-6349. doi: 10.1021/jp0658997
    [22] REUTER K, SCHEFFLER M.Composition, structure and stability of RuO2(110) as a function of oxygen pressure[J].Phys Rev B, 2001, 65(3):035406(1/11). doi: 10.1007/s10800-012-0490-5
    [23] LUCCHESI S, RUSSO U, GIUSTA A D.Cation distribution in natural Zn-spinels:Franklinite[J].Eur J Mineral, 1999, 11(3):501-511. doi: 10.1127/ejm/11/3/0501
    [24] YAMADA Y, KAMAZAWA K, TSUNODA Y.Interspin interactions in ZnFe2O4:Theoretical analysis of neutron scattering study[J].Phys Rev B, 2002, 66(6):064401(1/7). http://www.academia.edu/31524137/NANOPARTICULATE_MATERIALS
    [25] SCHIESSL W, POTZEL W, KARZEL H, STEINER M, KALVIUS G M, MARTIN A, KRAUSE M K, HALEVY I, GAL J, SCHÄFER W, WILL G, HILLBERG M, WÄPPLING R.Magnetic properties of the ZnFe2O4 spinel[J].Phys Rev B, 1996, 53(14):9143-9152. doi: 10.1103/PhysRevB.53.9143
    [26] CHENG P, LI W, ZHOU T L, JIN Y P, GU M Y.Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation[J].J Photochem Photobiol A, 2004, 168(1):97-101. http://www.sciencedirect.com/science/article/pii/S101060300400259X
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  34
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-05-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-08-10

目录

    /

    返回文章
    返回